Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
import os
|
|
@@ -8,18 +8,16 @@ import gradio as gr
|
|
| 8 |
# Load the model and tokenizer
|
| 9 |
model_path = "ByteDance/Sa2VA-4B"
|
| 10 |
|
| 11 |
-
model =
|
| 12 |
model_path,
|
| 13 |
-
torch_dtype
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
trust_remote_code = True
|
| 17 |
).eval().cuda()
|
| 18 |
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 20 |
model_path,
|
| 21 |
trust_remote_code = True,
|
| 22 |
-
use_fast = False
|
| 23 |
)
|
| 24 |
|
| 25 |
def image_vision(image_input_path, prompt):
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
from PIL import Image
|
| 4 |
import numpy as np
|
| 5 |
import os
|
|
|
|
| 8 |
# Load the model and tokenizer
|
| 9 |
model_path = "ByteDance/Sa2VA-4B"
|
| 10 |
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
model_path,
|
| 13 |
+
torch_dtype="auto",
|
| 14 |
+
device_map="auto",
|
| 15 |
+
trust_remote_code=True,
|
|
|
|
| 16 |
).eval().cuda()
|
| 17 |
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
model_path,
|
| 20 |
trust_remote_code = True,
|
|
|
|
| 21 |
)
|
| 22 |
|
| 23 |
def image_vision(image_input_path, prompt):
|