Spaces:
Running
on
Zero
Running
on
Zero
| # Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import warnings | |
| import shutil | |
| import torch | |
| from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
| from .projector import load_mm_projector | |
| from .videollama3_qwen2 import Videollama3Qwen2ForCausalLM, Videollama3Qwen2Config | |
| VLLMs = { | |
| "videollama3_qwen2": Videollama3Qwen2ForCausalLM, | |
| } | |
| VLLMConfigs = { | |
| "videollama3_qwen2": Videollama3Qwen2Config, | |
| } | |
| def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", **kwargs): | |
| if 'token' in kwargs: | |
| token = kwargs['token'] | |
| else: | |
| token = None | |
| # NOTE: auto device_map by default | |
| # if want to put model into a single device, you can set device_map={"": "cuda:0"} | |
| kwargs = {"device_map": device_map, **kwargs} | |
| config = AutoConfig.from_pretrained(model_path) | |
| config._attn_implementation = kwargs.pop('attn_implementation', "flash_attention_2") # default to flash_attention_2 | |
| torch_dtype = config.torch_dtype if hasattr(config, "torch_dtype") else kwargs.pop('torch_dtype', torch.float16) | |
| if load_8bit: | |
| kwargs['load_in_8bit'] = True | |
| elif load_4bit: | |
| # NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time.""" | |
| # kwargs['load_in_4bit'] = True | |
| kwargs['quantization_config'] = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch_dtype, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type='nf4' | |
| ) | |
| else: | |
| kwargs['torch_dtype'] = torch_dtype | |
| # judge model type | |
| model_type = config.model_type if hasattr(config, "model_type") else kwargs.pop('model_type', "videollama3_qwen2") | |
| # judge pretrain/finetune | |
| is_alignment = getattr(config, "tune_mm_mlp_adapter", False) or getattr(config, "is_alignment", False) | |
| # NOTE: lora/qlora model loading | |
| if 'lora' in model_name.lower() or 'qlora' in model_name.lower(): | |
| cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) | |
| # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None. | |
| # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token) | |
| model_base = model_base if model_base is not None else cfg_pretrained._name_or_path | |
| # NOTE: remove qlora training quantization config | |
| if hasattr(lora_cfg_pretrained, 'quantization_config'): | |
| del lora_cfg_pretrained.quantization_config | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) | |
| print('Loading VideoLLaMA from base model...') | |
| if 'qwen2' in model_base.lower(): | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
| else: | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
| token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
| if model.lm_head.weight.shape[0] != token_num: | |
| model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
| model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
| print('Loading additional VideoLLaMA weights...') | |
| if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | |
| non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | |
| else: | |
| # this is probably from HF Hub | |
| from huggingface_hub import hf_hub_download | |
| def load_from_hf(repo_id, filename, subfolder=None): | |
| cache_file = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder) | |
| return torch.load(cache_file, map_location='cpu') | |
| non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | |
| non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} | |
| if any(k.startswith('model.model.') for k in non_lora_trainables): | |
| non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} | |
| model.load_state_dict(non_lora_trainables, strict=False) | |
| from peft import PeftModel | |
| print('Loading LoRA weights...') | |
| model = PeftModel.from_pretrained(model, model_path) | |
| print('Merging LoRA weights...') | |
| model = model.merge_and_unload() | |
| print('Model is loaded...') | |
| elif model_base is not None or '-base' in model_name.lower() or is_alignment: | |
| # NOTE: Base/Pretrain model loading | |
| print('Loading VideoLLaMA 2 from base model...') | |
| cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token) | |
| # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None. | |
| # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token) | |
| model_base = model_base if model_base is not None else cfg_pretrained._name_or_path | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token) | |
| if model_type in ['videollama3', 'videollama3_qwen2']: | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
| else: | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) | |
| # NOTE; loading vision-language projector | |
| # * old codes for loading local mm_projector.bin | |
| # mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | |
| # mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
| # model.load_state_dict(mm_projector_weights, strict=False) | |
| # * new codes which supports loading mm_projector.bin both offline and online | |
| mm_projector_weights = load_mm_projector(model_path, token=token) | |
| model.load_state_dict(mm_projector_weights, strict=False) | |
| elif 'videollama' in model_type: | |
| # NOTE: SFT model loading | |
| print(model_path) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token) | |
| if model_type in ['videollama3_qwen2']: | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
| else: | |
| model = Videollama3Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token) | |
| model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs) | |
| processor = None | |
| if "videollama" in model_type: | |
| vision_encoder = model.get_vision_encoder() | |
| processor = vision_encoder.image_processor | |
| if hasattr(model.config, "max_sequence_length"): | |
| context_len = model.config.max_sequence_length | |
| else: | |
| context_len = 2048 | |
| return tokenizer, model, processor, context_len | |