Spaces:
Running
on
Zero
Running
on
Zero
| # Adopted from: https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from transformers import (AutoConfig, AutoModelForCausalLM, Qwen2Config, | |
| Qwen2ForCausalLM, Qwen2Model) | |
| from transformers.generation.utils import GenerateOutput | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from .videollama3_arch import Videollama3MetaForCausalLM, Videollama3MetaModel | |
| class Videollama3Qwen2Config(Qwen2Config): | |
| model_type = "videollama3_qwen2" | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| self.model_type = "videollama3_qwen2" | |
| class Videollama3Qwen2Model(Videollama3MetaModel, Qwen2Model): | |
| config_class = Videollama3Qwen2Config | |
| def __init__(self, config: Videollama3Qwen2Config): | |
| super(Videollama3Qwen2Model, self).__init__(config) | |
| class Videollama3Qwen2ForCausalLM(Qwen2ForCausalLM, Videollama3MetaForCausalLM): | |
| config_class = Videollama3Qwen2Config | |
| def __init__(self, config, **kwargs): | |
| super(Qwen2ForCausalLM, self).__init__(config) | |
| self.model = Videollama3Qwen2Model(config) | |
| # self.pretraining_tp = config.pretraining_tp | |
| self.vocab_size = config.vocab_size | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_model(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| images: Optional[torch.FloatTensor] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[int] = None, | |
| masks: Optional[List[torch.LongTensor]] = None, | |
| additional_images = None, | |
| **kwargs | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| if inputs_embeds is None: | |
| ( | |
| input_ids, | |
| attention_mask, | |
| past_key_values, | |
| inputs_embeds, | |
| labels, position_ids | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| input_ids, | |
| attention_mask, | |
| past_key_values, | |
| labels, | |
| images, | |
| position_ids, | |
| masks, | |
| additional_images | |
| ) | |
| return super().forward( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| labels=labels, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position=cache_position, | |
| ) | |
| def generate( | |
| self, | |
| inputs: Optional[torch.Tensor] = None, | |
| images: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> Union[GenerateOutput, torch.LongTensor]: | |
| position_ids = kwargs.pop("position_ids", None) | |
| attention_mask = kwargs.pop("attention_mask", None) | |
| additional_images = kwargs.pop("additional_images", None) | |
| masks = kwargs.pop("masks", None) | |
| if "inputs_embeds" in kwargs: | |
| raise NotImplementedError("`inputs_embeds` is not supported") | |
| if images is not None: | |
| ( | |
| input_ids, | |
| attention_mask, | |
| past_key_values, | |
| inputs_embeds, | |
| _, | |
| position_ids | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| input_ids=inputs, | |
| attention_mask=attention_mask, | |
| past_key_values=None, | |
| labels=None, | |
| images=images, | |
| position_ids=position_ids, | |
| additional_images=additional_images, | |
| masks=masks, | |
| ) | |
| else: | |
| inputs_embeds = self.get_model().embed_tokens(inputs) | |
| return super().generate( | |
| position_ids=position_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| **kwargs | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
| images = kwargs.pop("images", None) | |
| _inputs = super().prepare_inputs_for_generation( | |
| input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
| ) | |
| if images is not None: | |
| _inputs['images'] = images | |
| return _inputs | |
| AutoConfig.register("videollama3_qwen2", Videollama3Qwen2Config) | |
| AutoModelForCausalLM.register(Videollama3Qwen2Config, Videollama3Qwen2ForCausalLM) | |