Spaces:
Running
Running
File size: 6,884 Bytes
3b3db42 a491f87 852f90d 8b1f7a0 3b3db42 fe8ec74 8b1f7a0 3b3db42 8b1f7a0 a491f87 3f84332 8b1f7a0 852f90d 6f2fa1b 852f90d 6f2fa1b 3f84332 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 852f90d 6f2fa1b 446074e 6f2fa1b 852f90d 6f2fa1b 852f90d 3165936 8b1f7a0 54eae7e 3f84332 54eae7e 3d8dbe8 54eae7e 8b1f7a0 3165936 8b1f7a0 3165936 c85dcc4 3165936 8b1f7a0 60906bd c85dcc4 60906bd 8b1f7a0 6be74f5 8b1f7a0 54eae7e 8b1f7a0 fe8ec74 8b1f7a0 2a860f6 8b1f7a0 c85dcc4 8b1f7a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import json
import os
import sys
from datetime import datetime, timezone
import requests
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, settings
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
if sys.version_info < (3, 11):
UTC = timezone.utc
else:
from datetime import UTC
REQUESTED_MODELS: set[str] | None = None
def add_new_submit(
model: str, base_model: str, revision: str, precision: str, weight_type: str, json_str: str, commit_message: str
):
global REQUESTED_MODELS
if not REQUESTED_MODELS:
REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(
model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
request_json = {
"username": user_name,
"model_id": model,
"model_sha": revision,
"model_dtype": precision,
"content": json_str,
"weight_type": weight_type,
"commit_message": commit_message,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
try:
response = requests.post(
url=f"http://localhost:{settings.BACKEND_PORT}/api/v1/hf/community/submit/",
json=request_json, # 使用 json 参数发送 JSON body
headers={"Content-Type": "application/json"},
)
print("response: ", response) # print response content for debugging
if response.status_code == 200:
data = response.json()
print("returned data: ", data)
if data.get("code") == 0:
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for the model to show in the PENDING list."
)
return styled_error("Submission unsuccessful.")
except Exception:
return styled_error("Submission unsuccessful.")
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
global REQUESTED_MODELS
if not REQUESTED_MODELS:
REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(UTC).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, _ = is_model_on_hub(
model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
)
if not model_on_hub:
return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
try:
license = model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size,
"license": license,
"private": False,
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{settings.EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=settings.QUEUE_REPO_ID,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|