File size: 6,884 Bytes
3b3db42
 
a491f87
 
852f90d
 
8b1f7a0
3b3db42
fe8ec74
8b1f7a0
 
3b3db42
 
 
8b1f7a0
 
a491f87
 
 
 
 
3f84332
8b1f7a0
852f90d
6f2fa1b
852f90d
6f2fa1b
 
 
3f84332
6f2fa1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852f90d
6f2fa1b
 
 
 
 
 
852f90d
6f2fa1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852f90d
6f2fa1b
852f90d
6f2fa1b
 
 
 
 
852f90d
6f2fa1b
 
 
 
852f90d
6f2fa1b
852f90d
6f2fa1b
 
446074e
6f2fa1b
 
 
 
852f90d
6f2fa1b
852f90d
 
3165936
8b1f7a0
 
 
 
 
 
 
 
54eae7e
 
3f84332
54eae7e
3d8dbe8
 
 
 
 
54eae7e
8b1f7a0
3165936
8b1f7a0
 
 
 
 
 
 
 
 
 
3165936
c85dcc4
3165936
8b1f7a0
 
 
 
60906bd
c85dcc4
60906bd
8b1f7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be74f5
8b1f7a0
 
54eae7e
 
 
 
8b1f7a0
fe8ec74
8b1f7a0
2a860f6
8b1f7a0
 
 
 
 
 
 
 
c85dcc4
8b1f7a0
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import json
import os
import sys
from datetime import datetime, timezone

import requests

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, settings
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)

if sys.version_info < (3, 11):
    UTC = timezone.utc
else:
    from datetime import UTC

REQUESTED_MODELS: set[str] | None = None


def add_new_submit(
    model: str, base_model: str, revision: str, precision: str, weight_type: str, json_str: str, commit_message: str
):
    global REQUESTED_MODELS
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(
            model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
        )
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(
            model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
        )
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    request_json = {
        "username": user_name,
        "model_id": model,
        "model_sha": revision,
        "model_dtype": precision,
        "content": json_str,
        "weight_type": weight_type,
        "commit_message": commit_message,
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    try:
        response = requests.post(
            url=f"http://localhost:{settings.BACKEND_PORT}/api/v1/hf/community/submit/",
            json=request_json,  # 使用 json 参数发送 JSON body
            headers={"Content-Type": "application/json"},
        )
        print("response: ", response)  # print response content for debugging
        if response.status_code == 200:
            data = response.json()
            print("returned data: ", data)
            if data.get("code") == 0:
                return styled_message(
                    "Your request has been submitted to the evaluation queue!\nPlease wait for the model to show in the PENDING list."
                )
        return styled_error("Submission unsuccessful.")
    except Exception:
        return styled_error("Submission unsuccessful.")


def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    global REQUESTED_MODELS
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix())

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(UTC).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = is_model_on_hub(
            model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
        )
        if not base_model_on_hub:
            return styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = is_model_on_hub(
            model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True
        )
        if not model_on_hub:
            return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model, revision=revision)
    except Exception:
        return styled_error("Could not get your model information. Please fill it up properly.")

    model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return styled_error("Please select a license for your model")

    modelcard_OK, error_msg = check_model_card(model)
    if not modelcard_OK:
        return styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model": model,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": model_info.likes,
        "params": model_size,
        "license": license,
        "private": False,
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{settings.EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=settings.QUEUE_REPO_ID,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )