File size: 8,666 Bytes
3f84332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from pathlib import Path
from typing import Annotated, Any

import numpy as np
from pydantic import BaseModel, ConfigDict, Field, computed_field
from typing_extensions import Self

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Precision, WeightType
from src.prepare import get_benchmarks, load_meta_toml
from src.submission.check_validity import is_model_on_hub


class EvalResultJson(BaseModel):
    """Model of the eval result json file."""

    model_config: ConfigDict = ConfigDict(extra="allow", frozen=True)

    config: "EvalResultJson_Config"
    results: dict[str, dict[str, float | None]]


class EvalResultJson_Config(BaseModel):
    """`config` in the eval result json file."""

    model_config: ConfigDict = ConfigDict(extra="allow", frozen=True)

    model_name: Annotated[str, Field(..., description="The model name. e.g. Qwen/Qwen2.5-3B")]
    model_key: Annotated[str, Field(..., description="The model key. e.g. 'qwen2.5_3b'")]
    model_dtype: Annotated[str | None, Field(description="The model precision. e.g. torch.bfloat16")] = None
    model_sha: Annotated[str, Field(description="The model sha. e.g. 3aab1f1954e9cc14eb9509a215f9e5ca08227a9b")] = ""
    model_args: Annotated[str | None, Field(description="The model args.")] = None


class EvalResult(BaseModel):
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: Annotated[
        str,
        Field(
            ...,
            description="The evaluation name. e.g. '{model_key}_{precision}', '{org}_{model_key}_{precision}' (unique identifier)",
        ),
    ]
    full_model: Annotated[
        str,
        Field(
            ...,
            description="The full model name. e.g. '{org}/{model_title}' (path on hub)",
        ),
    ]
    org: str | None
    model: str
    link_url: str | None = None
    revision: str  # commit hash, "" if main
    results: dict[str, float]
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    still_on_hub: bool = False

    @computed_field
    @property
    def link(self) -> str | None:
        """Link to the model on the hub or other platform."""
        if self.link_url:
            # Use explicitly provided link
            return self.link_url
        if self.org and self.model:
            # Use inferred link on HuggingFace
            return f"https://huggingface.co/{self.org}/{self.model}"
        return None

    @classmethod
    def init_from_json_file(cls, json_path: Path) -> Self:
        """Inits the result from the specific model result file"""
        json_data = json_path.read_bytes()
        return cls.init_from_json(json_data)

    @classmethod
    def init_from_json(cls, json_data: str | bytes | bytearray) -> Self:
        """Inits the result from the specific json data"""
        data = EvalResultJson.model_validate_json(json_data)
        return cls.init_from_model(data)

    @classmethod
    def init_from_dict(cls, raw_model: dict[str, Any]) -> Self:
        """Inits the result from the specific json content"""
        data = EvalResultJson.model_validate(raw_model)
        return cls.init_from_model(data)

    @classmethod
    def init_from_model(cls, data: EvalResultJson) -> Self:
        BENCHMARKS = get_benchmarks()
        config = data.config

        # Precision
        precision = Precision.from_str(config.model_dtype)

        meta_toml = load_meta_toml()

        # Get model and org
        model_key: str = config.model_key or config.model_args or ""
        org = None
        link_url = None
        m_repo = meta_toml.model_key_to_repo.get(model_key)
        if m_repo is not None:
            if m_repo.repo_id:
                org, _, model_key = m_repo.repo_id.rpartition("/")
                org = org or None
            if m_repo.link:
                link_url = m_repo.link
        if not org:
            result_key = f"{model_key}_{precision.value.name}"
        else:
            result_key = f"{org}_{model_key}_{precision.value.name}"

        model_title = model_key
        m_meta = meta_toml.model_key_to_model.get(model_key)
        if m_meta is not None and m_meta.title:
            model_title = m_meta.title

        if org:
            still_on_hub, _, model_config = is_model_on_hub(
                f"{org}/{model_key}",
                config.model_sha or "main",
                trust_remote_code=True,
                test_tokenizer=False,
            )
        else:
            still_on_hub = False
            model_config = None
        architecture: str = "?"
        if model_config is not None:
            architectures: list[str] | None = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results: dict[str, float] = {}
        for task in BENCHMARKS:
            # We average all scores of a given metric (not all metrics are present in all files)
            # TODO: support multiple metrics
            metric_keys = ["caa", "acc"]
            accs = np.array([
                v.get(metric, np.nan)
                for k, v in data.results.items()
                if task.key == k
                for metric in metric_keys
                if metric in v
            ])
            if accs.size == 0 or any(np.isnan(acc) for acc in accs):
                continue

            # mean_acc = np.mean(accs) * 100.0
            mean_acc = np.mean(accs)
            results[task.title] = float(mean_acc)

        return cls.model_validate({
            "eval_name": result_key,
            "full_model": model_title,
            "org": org or None,
            "model": model_key,
            "link_url": link_url or None,
            "results": results,
            "precision": precision,
            "revision": config.model_sha or "",
            "still_on_hub": still_on_hub,
            "architecture": architecture,
        })

    def update_with_request_file(self, requests_path: Path | str) -> None:
        """Finds the relevant request file for the current model and updates info with it"""
        # TODO: do nothing for now
        return
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file) as f:
                request: dict[str, Any] = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception as e:
            print(
                f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}. Error: {e}"
            )

    def to_dict(self) -> dict:
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        BENCHMARKS = get_benchmarks()

        average = sum(v for v in self.results.values() if v is not None) / len(BENCHMARKS)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model, self.link),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in BENCHMARKS:
            data_dict[task.title] = self.results.get(task.title, None)

        return data_dict