Spaces:
Running
Running
yangzhitao
commited on
Commit
·
cd1b5e8
1
Parent(s):
22161b0
feat: add functions to truncate numbers to one decimal place and format DataFrame columns accordingly
Browse files- app.py +27 -0
- scripts/upload_dataset.py +16 -2
- src/populate.py +16 -2
app.py
CHANGED
|
@@ -65,6 +65,29 @@ print("///// --- Settings --- /////", settings.model_dump())
|
|
| 65 |
) = get_evaluation_queue_df(settings.EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 66 |
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def filter_dataframe_by_columns(selected_cols: list[str], original_df: pd.DataFrame) -> pd.DataFrame:
|
| 69 |
"""
|
| 70 |
根据选择的列过滤 DataFrame
|
|
@@ -179,6 +202,8 @@ def init_leaderboard_tabs(
|
|
| 179 |
precision_filtered_df = filter_dataframe_by_precision(default_precision, original_df)
|
| 180 |
# 根据默认选择再筛选一次 DataFrame
|
| 181 |
initial_filtered_df = filter_dataframe_by_columns(default_selected, precision_filtered_df)
|
|
|
|
|
|
|
| 182 |
|
| 183 |
with gr.Row():
|
| 184 |
with gr.Column(scale=1):
|
|
@@ -231,6 +256,8 @@ def init_leaderboard_tabs(
|
|
| 231 |
column_filtered_df = filter_dataframe_by_columns(selected_cols, precision_filtered_df)
|
| 232 |
# 最后按搜索关键词筛选
|
| 233 |
final_df = search_models_in_dataframe(search_text, column_filtered_df)
|
|
|
|
|
|
|
| 234 |
return final_df
|
| 235 |
|
| 236 |
# 绑定搜索、列选择和 precision 的变化事件,动态更新 DataFrame
|
|
|
|
| 65 |
) = get_evaluation_queue_df(settings.EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 66 |
|
| 67 |
|
| 68 |
+
def truncate_to_one_decimal(value):
|
| 69 |
+
"""
|
| 70 |
+
将数字截断到1位小数(不四舍五入)
|
| 71 |
+
"""
|
| 72 |
+
if pd.isna(value) or not isinstance(value, (int, float)):
|
| 73 |
+
return value
|
| 74 |
+
return float(int(value * 10)) / 10
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def format_dataframe_numbers(df: pd.DataFrame) -> pd.DataFrame:
|
| 78 |
+
"""
|
| 79 |
+
格式化 DataFrame 中的数字列,只保留1位小数并截断
|
| 80 |
+
"""
|
| 81 |
+
df = df.copy()
|
| 82 |
+
for col in df.columns:
|
| 83 |
+
if col in ['Model', 'T']: # 跳过非数字列
|
| 84 |
+
continue
|
| 85 |
+
# 检查是否为数值类型
|
| 86 |
+
if pd.api.types.is_numeric_dtype(df[col]):
|
| 87 |
+
df[col] = df[col].apply(truncate_to_one_decimal)
|
| 88 |
+
return df
|
| 89 |
+
|
| 90 |
+
|
| 91 |
def filter_dataframe_by_columns(selected_cols: list[str], original_df: pd.DataFrame) -> pd.DataFrame:
|
| 92 |
"""
|
| 93 |
根据选择的列过滤 DataFrame
|
|
|
|
| 202 |
precision_filtered_df = filter_dataframe_by_precision(default_precision, original_df)
|
| 203 |
# 根据默认选择再筛选一次 DataFrame
|
| 204 |
initial_filtered_df = filter_dataframe_by_columns(default_selected, precision_filtered_df)
|
| 205 |
+
# 格式化数字列,只保留1位小数并截断
|
| 206 |
+
initial_filtered_df = format_dataframe_numbers(initial_filtered_df)
|
| 207 |
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column(scale=1):
|
|
|
|
| 256 |
column_filtered_df = filter_dataframe_by_columns(selected_cols, precision_filtered_df)
|
| 257 |
# 最后按搜索关键词筛选
|
| 258 |
final_df = search_models_in_dataframe(search_text, column_filtered_df)
|
| 259 |
+
# 格式化数字列,只保留1位小数并截断
|
| 260 |
+
final_df = format_dataframe_numbers(final_df)
|
| 261 |
return final_df
|
| 262 |
|
| 263 |
# 绑定搜索、列选择和 precision 的变化事件,动态更新 DataFrame
|
scripts/upload_dataset.py
CHANGED
|
@@ -1,6 +1,18 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"""
|
| 3 |
Upload the eval-results/leaderboard folder to y-playground/results on Hugging Face Hub.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -14,7 +26,9 @@ load_dotenv()
|
|
| 14 |
|
| 15 |
# Configuration
|
| 16 |
LOCAL_FOLDER = Path("eval-results/leaderboard")
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
REPO_TYPE = "dataset" # or "model" or "space"
|
| 19 |
|
| 20 |
|
|
|
|
| 1 |
+
# !/usr/bin/env python3
|
| 2 |
+
# /// script
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "python-dotenv",
|
| 5 |
+
# "huggingface-hub",
|
| 6 |
+
# ]
|
| 7 |
+
# ///
|
| 8 |
"""
|
| 9 |
Upload the eval-results/leaderboard folder to y-playground/results on Hugging Face Hub.
|
| 10 |
+
|
| 11 |
+
Usage:
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
uv run scripts/upload_dataset.py
|
| 15 |
+
```
|
| 16 |
"""
|
| 17 |
|
| 18 |
import os
|
|
|
|
| 26 |
|
| 27 |
# Configuration
|
| 28 |
LOCAL_FOLDER = Path("eval-results/leaderboard")
|
| 29 |
+
HF_OWNER = os.getenv("HF_OWNER", "lmms-lab-si")
|
| 30 |
+
HF_RESULTS_REPO_NAME = os.getenv("HF_RESULTS_REPO_NAME", "EASI-Leaderboard-Results")
|
| 31 |
+
REPO_ID = f"{HF_OWNER}/{HF_RESULTS_REPO_NAME}"
|
| 32 |
REPO_TYPE = "dataset" # or "model" or "space"
|
| 33 |
|
| 34 |
|
src/populate.py
CHANGED
|
@@ -23,6 +23,15 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
| 23 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 24 |
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def get_leaderboard_df(
|
| 27 |
results_path: str,
|
| 28 |
requests_path: str,
|
|
@@ -49,7 +58,7 @@ def get_leaderboard_df(
|
|
| 49 |
exclude entries with missing benchmark results.
|
| 50 |
|
| 51 |
Note:
|
| 52 |
-
The function automatically
|
| 53 |
filters out any entries that have NaN values in the specified benchmark columns.
|
| 54 |
"""
|
| 55 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
|
@@ -57,7 +66,12 @@ def get_leaderboard_df(
|
|
| 57 |
|
| 58 |
df = pd.DataFrame.from_records(all_data_json)
|
| 59 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 60 |
-
df = df.loc[:, cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
# filter out if any of the benchmarks have not been produced
|
| 63 |
df = df.loc[has_no_nan_values(df, benchmark_cols), :]
|
|
|
|
| 23 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 24 |
|
| 25 |
|
| 26 |
+
def truncate_to_one_decimal(value):
|
| 27 |
+
"""
|
| 28 |
+
将数字截断到1位小数(不四舍五入)
|
| 29 |
+
"""
|
| 30 |
+
if pd.isna(value) or not isinstance(value, (int, float)):
|
| 31 |
+
return value
|
| 32 |
+
return float(int(value * 10)) / 10
|
| 33 |
+
|
| 34 |
+
|
| 35 |
def get_leaderboard_df(
|
| 36 |
results_path: str,
|
| 37 |
requests_path: str,
|
|
|
|
| 58 |
exclude entries with missing benchmark results.
|
| 59 |
|
| 60 |
Note:
|
| 61 |
+
The function automatically truncates numeric values to 1 decimal place and
|
| 62 |
filters out any entries that have NaN values in the specified benchmark columns.
|
| 63 |
"""
|
| 64 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
|
|
|
| 66 |
|
| 67 |
df = pd.DataFrame.from_records(all_data_json)
|
| 68 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 69 |
+
df = df.loc[:, cols]
|
| 70 |
+
|
| 71 |
+
# 截断数字列到1位小数(不四舍五入)
|
| 72 |
+
for col in df.columns:
|
| 73 |
+
if col not in ['Model', 'T'] and pd.api.types.is_numeric_dtype(df[col]):
|
| 74 |
+
df[col] = df[col].apply(truncate_to_one_decimal)
|
| 75 |
|
| 76 |
# filter out if any of the benchmarks have not been produced
|
| 77 |
df = df.loc[has_no_nan_values(df, benchmark_cols), :]
|