import json import os import sys from datetime import datetime, timezone import requests from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, settings from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, ) if sys.version_info < (3, 11): UTC = timezone.utc else: from datetime import UTC REQUESTED_MODELS: set[str] | None = None def add_new_submit( model: str, base_model: str, revision: str | None, precision: str, weight_type: str, model_type: str, json_str: str, commit_message: str, user_id: str, ): """ Submit a new evaluation request. Args: model: Model name (e.g., "org/model_name") base_model: Base model name (for delta or adapter weights) revision: Model revision/commit (defaults to "main" if empty) precision: Model precision (e.g., "float16", "bfloat16") weight_type: Weight type (e.g., "Original", "Delta", "Adapter") model_type: Model type (e.g., "pretrained", "fine-tuned") json_str: JSON string containing config and results commit_message: Optional commit message user_id: Submitter's HuggingFace user ID/username (from OAuth) """ global REQUESTED_MODELS if not REQUESTED_MODELS: REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix()) # Use provided user_id, or extract from model name as fallback if " " in precision: precision = precision.split(" ")[0] # Does the model actually exist? revision = revision or None # Is the model on the hub? if weight_type in ["Delta", "Adapter"]: base_model_on_hub, error, _ = is_model_on_hub( model_name=base_model, revision=revision or "main", token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True, ) if not base_model_on_hub: return styled_error(f'Base model "{base_model}" {error}') if not weight_type == "Adapter": model_on_hub, error, _ = is_model_on_hub( model_name=model, revision=revision or "main", token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True, ) if not model_on_hub: return styled_error(f'Model "{model}" {error}') # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model, revision=revision) except Exception: return styled_error("Could not get your model information. Please fill it up properly.") # Were the model card and license filled? try: license = model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") # Validate required fields if not model or not model.strip(): return styled_error("Model name is required.") if not user_id or not user_id.strip(): return styled_error("User ID/username is required. Please make sure you are logged in.") # Get current UTC time for submit_time current_time = datetime.now(UTC).strftime("%Y-%m-%dT%H:%M:%SZ") # Parse the evaluation results JSON (json_str contains config and results) try: eval_results = json.loads(json_str) except json.JSONDecodeError: return styled_error("Invalid evaluation results JSON format.") # Organize all fields into a comprehensive JSON structure for the content field # This will be the complete JSON that gets uploaded as a file model_type = model_type.rpartition(":")[2].strip() # "⭕ : instruction-tuned" -> "instruction-tuned" complete_submission_content = { "user_id": user_id, "model_id": model, "base_model": base_model or "", "model_sha": revision, "model_dtype": precision, "weight_type": weight_type, "model_type": model_type or "", "submit_time": current_time, "commit_message": commit_message, # Include the evaluation results (config and results) "config": eval_results.get("config", {}), "results": eval_results.get("results", {}), } # Convert the complete submission content to JSON string for the content field complete_content_json_str = json.dumps(complete_submission_content, indent=2, ensure_ascii=False) # Request JSON for the API call - includes all fields separately request_json = { "username": user_id, "model_id": model, "base_model": base_model or "", "model_sha": revision, "model_dtype": precision, "weight_type": weight_type, "model_type": model_type or "", "content": complete_content_json_str, # Complete JSON with all fields "submit_time": current_time, "commit_message": commit_message, } # Check for duplicate submission if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted.") try: response = requests.post( url=f"http://localhost:{settings.BACKEND_PORT}/api/v1/hf/community/submit/", json=request_json, # 使用 json 参数发送 JSON body headers={"Content-Type": "application/json"}, ) print("response: ", response) # print response content for debugging if response.status_code == 200: data = response.json() print("returned data: ", data) if data.get("code") == 0: return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for the model to show in the PENDING list." ) return styled_error("Submission unsuccessful.") except Exception: return styled_error("Submission unsuccessful.") def add_new_eval( model: str, base_model: str, revision: str, precision: str, weight_type: str, model_type: str, ): global REQUESTED_MODELS if not REQUESTED_MODELS: REQUESTED_MODELS, _ = already_submitted_models(settings.EVAL_REQUESTS_PATH.as_posix()) user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] precision = precision.split(" ")[0] current_time = datetime.now(UTC).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") # Does the model actually exist? if revision == "": revision = "main" # Is the model on the hub? if weight_type in ["Delta", "Adapter"]: base_model_on_hub, error, _ = is_model_on_hub( model_name=base_model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True ) if not base_model_on_hub: return styled_error(f'Base model "{base_model}" {error}') if not weight_type == "Adapter": model_on_hub, error, _ = is_model_on_hub( model_name=model, revision=revision, token=settings.HF_TOKEN.get_secret_value(), test_tokenizer=True ) if not model_on_hub: return styled_error(f'Model "{model}" {error}') # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model, revision=revision) except Exception: return styled_error("Could not get your model information. Please fill it up properly.") model_size = get_model_size(model_info=model_info, precision=precision) # Were the model card and license filled? try: license = model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) # Seems good, creating the eval print("Adding new eval") eval_entry = { "model": model, "base_model": base_model, "revision": revision, "precision": precision, "weight_type": weight_type, "status": "PENDING", "submitted_time": current_time, "model_type": model_type, "likes": model_info.likes, "params": model_size, "license": license, "private": False, } # Check for duplicate submission if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted.") print("Creating eval file") OUT_DIR = f"{settings.EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=settings.QUEUE_REPO_ID, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )