Spaces:
Runtime error
Runtime error
Upload 28 files
Browse files- .gitattributes +12 -0
- app.py +245 -0
- examples/ref_image/1.png +3 -0
- examples/ref_image/2.png +3 -0
- examples/ref_image/3.png +3 -0
- examples/ref_image/4.png +3 -0
- examples/ref_image/5.png +0 -0
- examples/ref_mask/1.png +0 -0
- examples/ref_mask/2.png +0 -0
- examples/ref_mask/3.png +0 -0
- examples/ref_mask/4.png +0 -0
- examples/ref_mask/5.png +0 -0
- examples/result/1.png +3 -0
- examples/result/2.png +3 -0
- examples/result/3.png +3 -0
- examples/result/4.png +3 -0
- examples/result/5.png +3 -0
- examples/source_image/1.png +3 -0
- examples/source_image/2.png +3 -0
- examples/source_image/3.png +3 -0
- examples/source_image/4.png +0 -0
- examples/source_image/5.png +0 -0
- examples/source_mask/1.png +0 -0
- examples/source_mask/2.png +0 -0
- examples/source_mask/3.png +0 -0
- examples/source_mask/4.png +0 -0
- examples/source_mask/5.png +0 -0
- requirements.txt +15 -0
- utils/utils.py +140 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/ref_image/1.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/ref_image/2.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
examples/ref_image/3.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
examples/ref_image/4.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
examples/result/1.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
examples/result/2.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
examples/result/3.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
examples/result/4.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
examples/result/5.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
examples/source_image/1.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
examples/source_image/2.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
examples/source_image/3.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image, ImageFilter, ImageDraw
|
| 8 |
+
from huggingface_hub import snapshot_download
|
| 9 |
+
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline
|
| 10 |
+
import math
|
| 11 |
+
from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 15 |
+
|
| 16 |
+
snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token)
|
| 17 |
+
snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token)
|
| 18 |
+
snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
dtype = torch.bfloat16
|
| 22 |
+
size = (768, 768)
|
| 23 |
+
|
| 24 |
+
pipe = FluxFillPipeline.from_pretrained(
|
| 25 |
+
"./FLUX.1-Fill-dev",
|
| 26 |
+
torch_dtype=dtype
|
| 27 |
+
).to("cuda")
|
| 28 |
+
|
| 29 |
+
pipe.load_lora_weights(
|
| 30 |
+
"./insertanything_model/20250321-082022_steps5000_pytorch_lora_weights.safetensors"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
### example #####
|
| 39 |
+
ref_dir='./examples/ref_image'
|
| 40 |
+
ref_mask_dir='./examples/ref_mask'
|
| 41 |
+
image_dir='./examples/source_image'
|
| 42 |
+
image_mask_dir='./examples/source_mask'
|
| 43 |
+
|
| 44 |
+
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
|
| 45 |
+
ref_list.sort()
|
| 46 |
+
|
| 47 |
+
ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
|
| 48 |
+
ref_mask_list.sort()
|
| 49 |
+
|
| 50 |
+
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
|
| 51 |
+
image_list.sort()
|
| 52 |
+
|
| 53 |
+
image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
|
| 54 |
+
image_mask_list.sort()
|
| 55 |
+
### example #####
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option):
|
| 61 |
+
|
| 62 |
+
if base_mask_option == "Draw Mask":
|
| 63 |
+
tar_image = base_image["image"]
|
| 64 |
+
tar_mask = base_image["mask"]
|
| 65 |
+
else:
|
| 66 |
+
tar_image = base_image["image"]
|
| 67 |
+
tar_mask = base_mask
|
| 68 |
+
|
| 69 |
+
if ref_mask_option == "Draw Mask":
|
| 70 |
+
ref_image = reference_image["image"]
|
| 71 |
+
ref_mask = reference_image["mask"]
|
| 72 |
+
else:
|
| 73 |
+
ref_image = reference_image["image"]
|
| 74 |
+
ref_mask = ref_mask
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
tar_image = tar_image.convert("RGB")
|
| 78 |
+
tar_mask = tar_mask.convert("L")
|
| 79 |
+
ref_image = ref_image.convert("RGB")
|
| 80 |
+
ref_mask = ref_mask.convert("L")
|
| 81 |
+
|
| 82 |
+
tar_image = np.asarray(tar_image)
|
| 83 |
+
tar_mask = np.asarray(tar_mask)
|
| 84 |
+
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
|
| 85 |
+
|
| 86 |
+
ref_image = np.asarray(ref_image)
|
| 87 |
+
ref_mask = np.asarray(ref_mask)
|
| 88 |
+
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
ref_box_yyxx = get_bbox_from_mask(ref_mask)
|
| 92 |
+
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
|
| 93 |
+
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
|
| 94 |
+
y1,y2,x1,x2 = ref_box_yyxx
|
| 95 |
+
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
|
| 96 |
+
ref_mask = ref_mask[y1:y2,x1:x2]
|
| 97 |
+
ratio = 1.3
|
| 98 |
+
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
|
| 102 |
+
|
| 103 |
+
kernel = np.ones((7, 7), np.uint8)
|
| 104 |
+
iterations = 2
|
| 105 |
+
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
|
| 106 |
+
|
| 107 |
+
# zome in
|
| 108 |
+
tar_box_yyxx = get_bbox_from_mask(tar_mask)
|
| 109 |
+
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
|
| 110 |
+
|
| 111 |
+
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6
|
| 112 |
+
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
|
| 113 |
+
y1,y2,x1,x2 = tar_box_yyxx_crop
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
old_tar_image = tar_image.copy()
|
| 117 |
+
tar_image = tar_image[y1:y2,x1:x2,:]
|
| 118 |
+
tar_mask = tar_mask[y1:y2,x1:x2]
|
| 119 |
+
|
| 120 |
+
H1, W1 = tar_image.shape[0], tar_image.shape[1]
|
| 121 |
+
# zome in
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
tar_mask = pad_to_square(tar_mask, pad_value=0)
|
| 125 |
+
tar_mask = cv2.resize(tar_mask, size)
|
| 126 |
+
|
| 127 |
+
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
|
| 128 |
+
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
tar_image = pad_to_square(tar_image, pad_value=255)
|
| 132 |
+
|
| 133 |
+
H2, W2 = tar_image.shape[0], tar_image.shape[1]
|
| 134 |
+
|
| 135 |
+
tar_image = cv2.resize(tar_image, size)
|
| 136 |
+
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1)
|
| 140 |
+
mask_black = np.ones_like(tar_image) * 0
|
| 141 |
+
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
|
| 145 |
+
mask_diptych[mask_diptych == 1] = 255
|
| 146 |
+
mask_diptych = Image.fromarray(mask_diptych)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
| 151 |
+
edited_image = pipe(
|
| 152 |
+
image=diptych_ref_tar,
|
| 153 |
+
mask_image=mask_diptych,
|
| 154 |
+
height=mask_diptych.size[1],
|
| 155 |
+
width=mask_diptych.size[0],
|
| 156 |
+
max_sequence_length=512,
|
| 157 |
+
generator=generator,
|
| 158 |
+
**pipe_prior_output,
|
| 159 |
+
).images[0]
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
width, height = edited_image.size
|
| 164 |
+
left = width // 2
|
| 165 |
+
right = width
|
| 166 |
+
top = 0
|
| 167 |
+
bottom = height
|
| 168 |
+
edited_image = edited_image.crop((left, top, right, bottom))
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
edited_image = np.array(edited_image)
|
| 172 |
+
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
|
| 173 |
+
edited_image = Image.fromarray(edited_image)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
return [edited_image]
|
| 177 |
+
|
| 178 |
+
def update_ui(option):
|
| 179 |
+
if option == "Draw Mask":
|
| 180 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 181 |
+
else:
|
| 182 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
with gr.Blocks() as demo:
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
gr.Markdown("# Play with InsertAnything to Insert your Target Objects! ")
|
| 189 |
+
gr.Markdown("# Upload / Draw Images for the Background (up) and Reference Object (down)")
|
| 190 |
+
gr.Markdown("### Draw mask on the background or just upload the mask.")
|
| 191 |
+
gr.Markdown("### Only select one of these two methods. Don't forget to click the corresponding button!!")
|
| 192 |
+
|
| 193 |
+
with gr.Row():
|
| 194 |
+
with gr.Column():
|
| 195 |
+
with gr.Row():
|
| 196 |
+
base_image = gr.Image(label="Background Image", source="upload", tool="sketch", type="pil",
|
| 197 |
+
brush_color='#FFFFFF', mask_opacity=0.5)
|
| 198 |
+
|
| 199 |
+
base_mask = gr.Image(label="Background Mask", source="upload", type="pil")
|
| 200 |
+
|
| 201 |
+
with gr.Row():
|
| 202 |
+
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask")
|
| 203 |
+
|
| 204 |
+
with gr.Row():
|
| 205 |
+
ref_image = gr.Image(label="Reference Image", source="upload", tool="sketch", type="pil",
|
| 206 |
+
brush_color='#FFFFFF', mask_opacity=0.5)
|
| 207 |
+
|
| 208 |
+
ref_mask = gr.Image(label="Reference Mask", source="upload", type="pil")
|
| 209 |
+
|
| 210 |
+
with gr.Row():
|
| 211 |
+
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Reference Mask Input Option", value="Upload with Mask")
|
| 212 |
+
|
| 213 |
+
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=512, columns=1)
|
| 214 |
+
with gr.Accordion("Advanced Option", open=True):
|
| 215 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666)
|
| 216 |
+
gr.Markdown("### Guidelines")
|
| 217 |
+
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
|
| 218 |
+
|
| 219 |
+
run_local_button = gr.Button(value="Run")
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
# #### example #####
|
| 223 |
+
num_examples = len(image_list)
|
| 224 |
+
for i in range(num_examples):
|
| 225 |
+
with gr.Row():
|
| 226 |
+
if i == 0:
|
| 227 |
+
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
|
| 228 |
+
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
|
| 229 |
+
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
|
| 230 |
+
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
|
| 231 |
+
else:
|
| 232 |
+
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
|
| 233 |
+
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
|
| 234 |
+
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
|
| 235 |
+
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
|
| 236 |
+
if i < num_examples - 1:
|
| 237 |
+
with gr.Row():
|
| 238 |
+
gr.HTML("<hr>")
|
| 239 |
+
# #### example #####
|
| 240 |
+
|
| 241 |
+
run_local_button.click(fn=run_local,
|
| 242 |
+
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option],
|
| 243 |
+
outputs=[baseline_gallery]
|
| 244 |
+
)
|
| 245 |
+
demo.launch()
|
examples/ref_image/1.png
ADDED
|
Git LFS Details
|
examples/ref_image/2.png
ADDED
|
Git LFS Details
|
examples/ref_image/3.png
ADDED
|
Git LFS Details
|
examples/ref_image/4.png
ADDED
|
Git LFS Details
|
examples/ref_image/5.png
ADDED
|
examples/ref_mask/1.png
ADDED
|
examples/ref_mask/2.png
ADDED
|
examples/ref_mask/3.png
ADDED
|
examples/ref_mask/4.png
ADDED
|
examples/ref_mask/5.png
ADDED
|
examples/result/1.png
ADDED
|
Git LFS Details
|
examples/result/2.png
ADDED
|
Git LFS Details
|
examples/result/3.png
ADDED
|
Git LFS Details
|
examples/result/4.png
ADDED
|
Git LFS Details
|
examples/result/5.png
ADDED
|
Git LFS Details
|
examples/source_image/1.png
ADDED
|
Git LFS Details
|
examples/source_image/2.png
ADDED
|
Git LFS Details
|
examples/source_image/3.png
ADDED
|
Git LFS Details
|
examples/source_image/4.png
ADDED
|
examples/source_image/5.png
ADDED
|
examples/source_mask/1.png
ADDED
|
examples/source_mask/2.png
ADDED
|
examples/source_mask/3.png
ADDED
|
examples/source_mask/4.png
ADDED
|
examples/source_mask/5.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.5.1
|
| 2 |
+
torchvision==0.20.1
|
| 3 |
+
diffusers==0.32.2
|
| 4 |
+
transformers==4.50.3
|
| 5 |
+
peft==0.15.1
|
| 6 |
+
opencv-python
|
| 7 |
+
protobuf
|
| 8 |
+
sentencepiece
|
| 9 |
+
gradio==3.39.0
|
| 10 |
+
bezier
|
| 11 |
+
lightning==2.5.1
|
| 12 |
+
datasets
|
| 13 |
+
prodigyopt
|
| 14 |
+
einops
|
| 15 |
+
scipy
|
utils/utils.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
def f(r, T=0.6, beta=0.1):
|
| 6 |
+
return np.where(r < T, beta + (1 - beta) / T * r, 1)
|
| 7 |
+
|
| 8 |
+
# Get the bounding box of the mask
|
| 9 |
+
def get_bbox_from_mask(mask):
|
| 10 |
+
h,w = mask.shape[0],mask.shape[1]
|
| 11 |
+
|
| 12 |
+
if mask.sum() < 10:
|
| 13 |
+
return 0,h,0,w
|
| 14 |
+
rows = np.any(mask,axis=1)
|
| 15 |
+
cols = np.any(mask,axis=0)
|
| 16 |
+
y1,y2 = np.where(rows)[0][[0,-1]]
|
| 17 |
+
x1,x2 = np.where(cols)[0][[0,-1]]
|
| 18 |
+
return (y1,y2,x1,x2)
|
| 19 |
+
|
| 20 |
+
# Expand the bounding box
|
| 21 |
+
def expand_bbox(mask, yyxx, ratio, min_crop=0):
|
| 22 |
+
y1,y2,x1,x2 = yyxx
|
| 23 |
+
H,W = mask.shape[0], mask.shape[1]
|
| 24 |
+
|
| 25 |
+
yyxx_area = (y2-y1+1) * (x2-x1+1)
|
| 26 |
+
r1 = yyxx_area / (H * W)
|
| 27 |
+
r2 = f(r1)
|
| 28 |
+
ratio = math.sqrt(r2 / r1)
|
| 29 |
+
|
| 30 |
+
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
|
| 31 |
+
h = ratio * (y2-y1+1)
|
| 32 |
+
w = ratio * (x2-x1+1)
|
| 33 |
+
h = max(h,min_crop)
|
| 34 |
+
w = max(w,min_crop)
|
| 35 |
+
|
| 36 |
+
x1 = int(xc - w * 0.5)
|
| 37 |
+
x2 = int(xc + w * 0.5)
|
| 38 |
+
y1 = int(yc - h * 0.5)
|
| 39 |
+
y2 = int(yc + h * 0.5)
|
| 40 |
+
|
| 41 |
+
x1 = max(0,x1)
|
| 42 |
+
x2 = min(W,x2)
|
| 43 |
+
y1 = max(0,y1)
|
| 44 |
+
y2 = min(H,y2)
|
| 45 |
+
return (y1,y2,x1,x2)
|
| 46 |
+
|
| 47 |
+
# Pad the image to a square shape
|
| 48 |
+
def pad_to_square(image, pad_value = 255, random = False):
|
| 49 |
+
H,W = image.shape[0], image.shape[1]
|
| 50 |
+
if H == W:
|
| 51 |
+
return image
|
| 52 |
+
|
| 53 |
+
padd = abs(H - W)
|
| 54 |
+
if random:
|
| 55 |
+
padd_1 = int(np.random.randint(0,padd))
|
| 56 |
+
else:
|
| 57 |
+
padd_1 = int(padd / 2)
|
| 58 |
+
padd_2 = padd - padd_1
|
| 59 |
+
|
| 60 |
+
if len(image.shape) == 2:
|
| 61 |
+
if H > W:
|
| 62 |
+
pad_param = ((0, 0), (padd_1, padd_2))
|
| 63 |
+
else:
|
| 64 |
+
pad_param = ((padd_1, padd_2), (0, 0))
|
| 65 |
+
elif len(image.shape) == 3:
|
| 66 |
+
if H > W:
|
| 67 |
+
pad_param = ((0, 0), (padd_1, padd_2), (0, 0))
|
| 68 |
+
else:
|
| 69 |
+
pad_param = ((padd_1, padd_2), (0, 0), (0, 0))
|
| 70 |
+
|
| 71 |
+
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
|
| 72 |
+
|
| 73 |
+
return image
|
| 74 |
+
|
| 75 |
+
# Expand the image and mask
|
| 76 |
+
def expand_image_mask(image, mask, ratio=1.4):
|
| 77 |
+
h,w = image.shape[0], image.shape[1]
|
| 78 |
+
H,W = int(h * ratio), int(w * ratio)
|
| 79 |
+
h1 = int((H - h) // 2)
|
| 80 |
+
h2 = H - h - h1
|
| 81 |
+
w1 = int((W -w) // 2)
|
| 82 |
+
w2 = W -w - w1
|
| 83 |
+
|
| 84 |
+
pad_param_image = ((h1,h2),(w1,w2),(0,0))
|
| 85 |
+
pad_param_mask = ((h1,h2),(w1,w2))
|
| 86 |
+
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
|
| 87 |
+
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
|
| 88 |
+
return image, mask
|
| 89 |
+
|
| 90 |
+
# Convert the bounding box to a square shape
|
| 91 |
+
def box2squre(image, box):
|
| 92 |
+
H,W = image.shape[0], image.shape[1]
|
| 93 |
+
y1,y2,x1,x2 = box
|
| 94 |
+
cx = (x1 + x2) // 2
|
| 95 |
+
cy = (y1 + y2) // 2
|
| 96 |
+
h,w = y2-y1, x2-x1
|
| 97 |
+
|
| 98 |
+
if h >= w:
|
| 99 |
+
x1 = cx - h//2
|
| 100 |
+
x2 = cx + h//2
|
| 101 |
+
else:
|
| 102 |
+
y1 = cy - w//2
|
| 103 |
+
y2 = cy + w//2
|
| 104 |
+
x1 = max(0,x1)
|
| 105 |
+
x2 = min(W,x2)
|
| 106 |
+
y1 = max(0,y1)
|
| 107 |
+
y2 = min(H,y2)
|
| 108 |
+
return (y1,y2,x1,x2)
|
| 109 |
+
|
| 110 |
+
# Crop the predicted image back to the original image
|
| 111 |
+
def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop):
|
| 112 |
+
H1, W1, H2, W2 = extra_sizes
|
| 113 |
+
y1,y2,x1,x2 = tar_box_yyxx_crop
|
| 114 |
+
pred = cv2.resize(pred, (W2, H2))
|
| 115 |
+
m = 2 # maigin_pixel
|
| 116 |
+
|
| 117 |
+
if W1 == H1:
|
| 118 |
+
if m != 0:
|
| 119 |
+
tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
|
| 120 |
+
else:
|
| 121 |
+
tar_image[y1 :y2, x1:x2, :] = pred[:, :]
|
| 122 |
+
return tar_image
|
| 123 |
+
|
| 124 |
+
if W1 < W2:
|
| 125 |
+
pad1 = int((W2 - W1) / 2)
|
| 126 |
+
pad2 = W2 - W1 - pad1
|
| 127 |
+
pred = pred[:,pad1: -pad2, :]
|
| 128 |
+
else:
|
| 129 |
+
pad1 = int((H2 - H1) / 2)
|
| 130 |
+
pad2 = H2 - H1 - pad1
|
| 131 |
+
pred = pred[pad1: -pad2, :, :]
|
| 132 |
+
|
| 133 |
+
gen_image = tar_image.copy()
|
| 134 |
+
if m != 0:
|
| 135 |
+
gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m]
|
| 136 |
+
else:
|
| 137 |
+
gen_image[y1 :y2, x1:x2, :] = pred[:, :]
|
| 138 |
+
|
| 139 |
+
return gen_image
|
| 140 |
+
|