Spaces:
Running
on
Zero
Running
on
Zero
lucakempkes
commited on
Commit
·
0c8edfe
1
Parent(s):
19fb882
support text to image
Browse files
app.py
CHANGED
|
@@ -5,7 +5,6 @@ import gradio as gr
|
|
| 5 |
import tempfile
|
| 6 |
import spaces
|
| 7 |
import numpy as np
|
| 8 |
-
from PIL import Image
|
| 9 |
import random
|
| 10 |
|
| 11 |
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
|
|
@@ -63,20 +62,23 @@ def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_
|
|
| 63 |
except Exception as e:
|
| 64 |
gr.Warning("Error attempting to calculate new dimensions")
|
| 65 |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
| 66 |
-
|
| 67 |
-
def
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
if steps > 4 and duration_seconds > 4:
|
| 73 |
return 90
|
| 74 |
elif steps > 4 or duration_seconds > 4:
|
| 75 |
return 75
|
| 76 |
else:
|
| 77 |
return 60
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
@spaces.GPU(duration=
|
| 80 |
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
|
| 81 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 82 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
@@ -108,58 +110,80 @@ def generate_video(input_image, prompt, height, width, negative_prompt=default_n
|
|
| 108 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 109 |
return video_path, current_seed
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
|
| 113 |
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")
|
| 114 |
|
| 115 |
-
with gr.
|
| 116 |
-
with gr.
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
if __name__ == "__main__":
|
| 165 |
demo.queue().launch()
|
|
|
|
| 5 |
import tempfile
|
| 6 |
import spaces
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import random
|
| 9 |
|
| 10 |
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
gr.Warning("Error attempting to calculate new dimensions")
|
| 64 |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
|
| 65 |
+
|
| 66 |
+
def get_duration_video(input_image, prompt, height, width,
|
| 67 |
+
negative_prompt, duration_seconds,
|
| 68 |
+
guidance_scale, steps,
|
| 69 |
+
seed, randomize_seed,
|
| 70 |
+
progress):
|
| 71 |
if steps > 4 and duration_seconds > 4:
|
| 72 |
return 90
|
| 73 |
elif steps > 4 or duration_seconds > 4:
|
| 74 |
return 75
|
| 75 |
else:
|
| 76 |
return 60
|
| 77 |
+
|
| 78 |
+
def get_duration_image(prompt, height, width, negative_prompt, guidance_scale, steps, seed, randomize_seed, progress):
|
| 79 |
+
return 30 if steps > 4 else 20
|
| 80 |
|
| 81 |
+
@spaces.GPU(duration=get_duration_video)
|
| 82 |
def generate_video(input_image, prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
|
| 83 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 84 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
|
|
| 110 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 111 |
return video_path, current_seed
|
| 112 |
|
| 113 |
+
@spaces.GPU(duration=get_duration_image)
|
| 114 |
+
def generate_image(prompt, height, width, negative_prompt=default_negative_prompt, guidance_scale=0, steps=4, seed=44, randomize_seed=False, progress=gr.Progress(track_tqdm=True)):
|
| 115 |
+
"""Generates a single image using the text-to-video pipeline by requesting only one frame."""
|
| 116 |
+
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
| 117 |
+
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 118 |
+
|
| 119 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 120 |
+
|
| 121 |
+
with torch.inference_mode():
|
| 122 |
+
output_frame = text_to_video_pipe(
|
| 123 |
+
prompt=prompt,
|
| 124 |
+
negative_prompt=negative_prompt,
|
| 125 |
+
height=target_h,
|
| 126 |
+
width=target_w,
|
| 127 |
+
num_frames=1,
|
| 128 |
+
guidance_scale=float(guidance_scale),
|
| 129 |
+
num_inference_steps=int(steps),
|
| 130 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed)
|
| 131 |
+
).frames[0][0]
|
| 132 |
+
|
| 133 |
+
return output_frame, current_seed
|
| 134 |
+
|
| 135 |
with gr.Blocks() as demo:
|
| 136 |
gr.Markdown("# Fast Wan 2.2 TI2V 5B Demo")
|
| 137 |
gr.Markdown("""This Demo is using [FastWan2.2-TI2V-5B](https://huggingface.co/FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers) which is fine-tuned with Sparse-distill method which allows wan to generate high quality videos in 3-5 steps.""")
|
| 138 |
|
| 139 |
+
with gr.Tabs():
|
| 140 |
+
with gr.TabItem("Text/Image-to-Video"):
|
| 141 |
+
with gr.Row():
|
| 142 |
+
with gr.Column():
|
| 143 |
+
input_image_component = gr.Image(type="pil", label="Input Image (optional, auto-resized to target H/W)")
|
| 144 |
+
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
|
| 145 |
+
duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
| 146 |
+
|
| 147 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 148 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 149 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 150 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
| 151 |
+
with gr.Row():
|
| 152 |
+
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
| 153 |
+
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
| 154 |
+
steps_slider = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
|
| 155 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
|
| 156 |
+
|
| 157 |
+
generate_button = gr.Button("Generate Video", variant="primary")
|
| 158 |
+
|
| 159 |
+
with gr.Column():
|
| 160 |
+
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
|
| 161 |
+
|
| 162 |
+
input_image_component.upload(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input])
|
| 163 |
+
input_image_component.clear(fn=handle_image_upload_for_dims_wan, inputs=[input_image_component, height_input, width_input], outputs=[height_input, width_input])
|
| 164 |
+
|
| 165 |
+
ui_inputs_video = [input_image_component, prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox]
|
| 166 |
+
generate_button.click(fn=generate_video, inputs=ui_inputs_video, outputs=[video_output, seed_input])
|
| 167 |
+
|
| 168 |
+
with gr.TabItem("Text-to-Image"):
|
| 169 |
+
with gr.Row():
|
| 170 |
+
with gr.Column():
|
| 171 |
+
prompt_input_img = gr.Textbox(label="Prompt", value="A majestic lion in the savanna, cinematic lighting, 4k, high detail")
|
| 172 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 173 |
+
negative_prompt_input_img = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 174 |
+
seed_input_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 175 |
+
randomize_seed_checkbox_img = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
| 176 |
+
with gr.Row():
|
| 177 |
+
height_input_img = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
| 178 |
+
width_input_img = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
| 179 |
+
steps_slider_img = gr.Slider(minimum=1, maximum=8, step=1, value=4, label="Inference Steps")
|
| 180 |
+
guidance_scale_input_img = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.0, label="Guidance Scale")
|
| 181 |
+
generate_button_img = gr.Button("Generate Image", variant="primary")
|
| 182 |
+
with gr.Column():
|
| 183 |
+
image_output = gr.Image(label="Generated Image", interactive=False)
|
| 184 |
+
|
| 185 |
+
ui_inputs_img = [prompt_input_img, height_input_img, width_input_img, negative_prompt_input_img, guidance_scale_input_img, steps_slider_img, seed_input_img, randomize_seed_checkbox_img]
|
| 186 |
+
generate_button_img.click(fn=generate_image, inputs=ui_inputs_img, outputs=[image_output, seed_input_img])
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
| 189 |
demo.queue().launch()
|