Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import os | |
| import pandas as pd | |
| from io import StringIO | |
| # Define your Hugging Face token (make sure to set it as an environment variable) | |
| HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable | |
| # Initialize the Gradio Client for the specified API | |
| client = Client("mangoesai/Elections_Comparison_Agent_V4", hf_token=HF_TOKEN) | |
| # client_name = ['2016 Election','2024 Election', 'Comparison two years'] | |
| def stream_chat_with_rag( | |
| message: str, | |
| # history: list, | |
| client_name: str | |
| ): | |
| # print(f"Message: {message}") | |
| #answer = client.predict(question=question, api_name="/run_graph") | |
| answer, fig = client.predict( | |
| query= message, | |
| election_year=client_name, | |
| api_name="/process_query" | |
| ) | |
| # Debugging: Print the raw response | |
| print("Raw answer from API:") | |
| print(answer) | |
| print("top works from API:") | |
| print(fig) | |
| # return answer, fig | |
| return answer | |
| def heatmap(top_n): | |
| # df = pd.read_csv('submission_emotiontopics2024GPTresult.csv') | |
| # topics_df = gr.Dataframe(value=df, label="Data Input") | |
| pivot_table = client.predict( | |
| top_n= top_n, | |
| api_name="/get_heatmap_pivot_table" | |
| ) | |
| print(pivot_table) | |
| print(type(pivot_table)) | |
| """ | |
| pivot_table is a dict like: | |
| {'headers': ['Index', 'economy', 'human rights', 'immigrant', 'politics'], | |
| 'data': [['anger', 55880.0, 557679.0, 147766.0, 180094.0], | |
| ['disgust', 26911.0, 123112.0, 64567.0, 46460.0], | |
| ['fear', 51466.0, 188898.0, 113174.0, 150578.0], | |
| ['neutral', 77005.0, 192945.0, 20549.0, 190793.0]], | |
| 'metadata': None} | |
| """ | |
| # transfere dictionary to df | |
| df = pd.DataFrame(pivot_table['data'], columns=pivot_table['headers']) | |
| df.set_index('Index', inplace=True) | |
| plt.figure(figsize=(10, 8)) | |
| sns.heatmap(df, | |
| cmap='YlOrRd', | |
| cbar_kws={'label': 'Weighted Frequency'}, | |
| square=True) | |
| plt.title(f'Top {top_n} Emotions vs Topics Weighted Frequency') | |
| plt.xlabel('Topics') | |
| plt.ylabel('Emotions') | |
| plt.xticks(rotation=45, ha='right') | |
| plt.tight_layout() | |
| return plt.gcf() | |
| # Create Gradio interface | |
| with gr.Blocks(title="Reddit Election Analysis") as demo: | |
| gr.Markdown("# Reddit Public sentiment & Social topic distribution ") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| top_n = gr.Dropdown(choices=[1,2,3,4,5,6,7,8,9,10]) | |
| with gr.Row(): | |
| fresh_btn = gr.Button("Refresh Heatmap") | |
| with gr.Column(): | |
| output_heatmap = gr.Plot( | |
| label="Top Public sentiment & Social topic Heatmap", | |
| container=True, # Ensures the plot is contained within its area | |
| elem_classes="heatmap-plot" # Add a custom class for styling | |
| ) | |
| gr.Markdown("# Reddit Election Posts/Comments Analysis") | |
| gr.Markdown("Ask questions about election-related comments and posts") | |
| with gr.Row(): | |
| with gr.Column(): | |
| year_selector = gr.Radio( | |
| choices=["2016 Election", "2024 Election", "Comparison two years"], | |
| label="Select Election Year", | |
| value="2016 Election" | |
| ) | |
| query_input = gr.Textbox( | |
| label="Your Question", | |
| placeholder="Ask about election comments or posts..." | |
| ) | |
| submit_btn = gr.Button("Submit") | |
| gr.Markdown(""" | |
| ## Example Questions: | |
| - Is there any comments don't like the election results | |
| - Summarize the main discussions about voting process | |
| - What are the common opinions about candidates? | |
| """) | |
| with gr.Column(): | |
| output_text = gr.Textbox( | |
| label="Response", | |
| lines=20 | |
| ) | |
| with gr.Row(): | |
| output_plot = gr.Plot( | |
| label="Topic Distribution", | |
| container=True, # Ensures the plot is contained within its area | |
| elem_classes="topic-plot" # Add a custom class for styling | |
| ) | |
| # Add custom CSS to ensure proper plot sizing | |
| gr.HTML(""" | |
| <style> | |
| .topic-plot { | |
| min-height: 600px; | |
| width: 100%; | |
| margin: auto; | |
| } | |
| .heatmap-plot { | |
| min-height: 400px; | |
| width: 100%; | |
| margin: auto; | |
| } | |
| </style> | |
| """) | |
| fresh_btn.click( | |
| fn=heatmap, | |
| inputs=top_n, | |
| outputs=output_heatmap | |
| ) | |
| # Update both outputs when submit is clicked | |
| # submit_btn.click( | |
| # fn=stream_chat_with_rag, | |
| # inputs=[query_input, year_selector], | |
| # outputs=[output_text, output_plot] | |
| # ) | |
| submit_btn.click( | |
| fn=stream_chat_with_rag, | |
| inputs=[query_input, year_selector], | |
| outputs=output_text | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |