Spaces:
Sleeping
Sleeping
Initial commit
Browse files- .gitignore +207 -0
- LICENSE +21 -0
- README.md +122 -14
- app.py +502 -0
- requirements.txt +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[codz]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py.cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# UV
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
#uv.lock
|
| 102 |
+
|
| 103 |
+
# poetry
|
| 104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
+
# commonly ignored for libraries.
|
| 107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
+
#poetry.lock
|
| 109 |
+
#poetry.toml
|
| 110 |
+
|
| 111 |
+
# pdm
|
| 112 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 113 |
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
| 114 |
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
| 115 |
+
#pdm.lock
|
| 116 |
+
#pdm.toml
|
| 117 |
+
.pdm-python
|
| 118 |
+
.pdm-build/
|
| 119 |
+
|
| 120 |
+
# pixi
|
| 121 |
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
| 122 |
+
#pixi.lock
|
| 123 |
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
| 124 |
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
| 125 |
+
.pixi
|
| 126 |
+
|
| 127 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 128 |
+
__pypackages__/
|
| 129 |
+
|
| 130 |
+
# Celery stuff
|
| 131 |
+
celerybeat-schedule
|
| 132 |
+
celerybeat.pid
|
| 133 |
+
|
| 134 |
+
# SageMath parsed files
|
| 135 |
+
*.sage.py
|
| 136 |
+
|
| 137 |
+
# Environments
|
| 138 |
+
.env
|
| 139 |
+
.envrc
|
| 140 |
+
.venv
|
| 141 |
+
env/
|
| 142 |
+
venv/
|
| 143 |
+
ENV/
|
| 144 |
+
env.bak/
|
| 145 |
+
venv.bak/
|
| 146 |
+
|
| 147 |
+
# Spyder project settings
|
| 148 |
+
.spyderproject
|
| 149 |
+
.spyproject
|
| 150 |
+
|
| 151 |
+
# Rope project settings
|
| 152 |
+
.ropeproject
|
| 153 |
+
|
| 154 |
+
# mkdocs documentation
|
| 155 |
+
/site
|
| 156 |
+
|
| 157 |
+
# mypy
|
| 158 |
+
.mypy_cache/
|
| 159 |
+
.dmypy.json
|
| 160 |
+
dmypy.json
|
| 161 |
+
|
| 162 |
+
# Pyre type checker
|
| 163 |
+
.pyre/
|
| 164 |
+
|
| 165 |
+
# pytype static type analyzer
|
| 166 |
+
.pytype/
|
| 167 |
+
|
| 168 |
+
# Cython debug symbols
|
| 169 |
+
cython_debug/
|
| 170 |
+
|
| 171 |
+
# PyCharm
|
| 172 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 173 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 174 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 175 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 176 |
+
#.idea/
|
| 177 |
+
|
| 178 |
+
# Abstra
|
| 179 |
+
# Abstra is an AI-powered process automation framework.
|
| 180 |
+
# Ignore directories containing user credentials, local state, and settings.
|
| 181 |
+
# Learn more at https://abstra.io/docs
|
| 182 |
+
.abstra/
|
| 183 |
+
|
| 184 |
+
# Visual Studio Code
|
| 185 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
| 186 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
| 187 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
| 188 |
+
# you could uncomment the following to ignore the entire vscode folder
|
| 189 |
+
# .vscode/
|
| 190 |
+
|
| 191 |
+
# Ruff stuff:
|
| 192 |
+
.ruff_cache/
|
| 193 |
+
|
| 194 |
+
# PyPI configuration file
|
| 195 |
+
.pypirc
|
| 196 |
+
|
| 197 |
+
# Cursor
|
| 198 |
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
| 199 |
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
| 200 |
+
# refer to https://docs.cursor.com/context/ignore-files
|
| 201 |
+
.cursorignore
|
| 202 |
+
.cursorindexingignore
|
| 203 |
+
|
| 204 |
+
# Marimo
|
| 205 |
+
marimo/_static/
|
| 206 |
+
marimo/_lsp/
|
| 207 |
+
__marimo__/
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 Emmanuel David Muñiz
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,14 +1,122 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Token-Attention-Viewer
|
| 2 |
+
Token Attention Viewer is an interactive Gradio app that visualizes the self-attention weights inside transformer language models for every generated token. It helps researchers, students, and developers explore how models like GPT-2 or LLaMA focus on different parts of the input as they generate text.
|
| 3 |
+
|
| 4 |
+
# Word-Level Attention Visualizer (Gradio)
|
| 5 |
+
|
| 6 |
+
An interactive Gradio app to **generate text with a causal language model** and **visualize attention word-by-word**.
|
| 7 |
+
Each word in the generated continuation is shown like a paragraph; the **background opacity** behind a word reflects the **sum of attention weights** that the selected (query) word assigns to the context. You can also switch between many popular Hugging Face models.
|
| 8 |
+
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
## ✨ What the app does
|
| 12 |
+
|
| 13 |
+
* **Generate** a continuation from your prompt using a selected causal LM (GPT-2, OPT, Mistral, etc.).
|
| 14 |
+
* **Select a generated word** to inspect.
|
| 15 |
+
* **Visualize attention** as a semi-transparent background behind words (no plots/libraries like matplotlib).
|
| 16 |
+
* **Mean across layers/heads** or inspect a specific layer/head.
|
| 17 |
+
* **Proper detokenization** to real words (regex-based) and **EOS tokens are stripped** (no `<|endoftext|>` clutter).
|
| 18 |
+
* **Paragraph wrapping**: words wrap to new lines automatically inside the box.
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 🚀 Quickstart
|
| 23 |
+
|
| 24 |
+
### 1) Clone
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
git clone https://github.com/devMuniz02/Token-Attention-Viewer
|
| 28 |
+
cd Token-Attention-Viewer
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### 2) (Optional) Create a virtual environment
|
| 32 |
+
|
| 33 |
+
**Windows (PowerShell):**
|
| 34 |
+
|
| 35 |
+
```powershell
|
| 36 |
+
python -m venv venv
|
| 37 |
+
.\venv\Scripts\Activate.ps1
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
**macOS / Linux (bash/zsh):**
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
python3 -m venv venv
|
| 44 |
+
source venv/bin/activate
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### 3) Install requirements
|
| 48 |
+
|
| 49 |
+
Install:
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
pip install -r requirements.txt
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
### 4) Run the app
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
python app.py
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
You should see Gradio report a local URL similar to:
|
| 63 |
+
|
| 64 |
+
```
|
| 65 |
+
Running on local URL: http://127.0.0.1:7860
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### 5) Open in your browser
|
| 69 |
+
|
| 70 |
+
Open the printed URL (default `http://127.0.0.1:7860`) in your browser.
|
| 71 |
+
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## 🧭 How to use
|
| 75 |
+
|
| 76 |
+
1. **Model**: pick a model from the dropdown and click **Load / Switch Model**.
|
| 77 |
+
|
| 78 |
+
* Small models (e.g., `distilgpt2`, `gpt2`) run on CPU.
|
| 79 |
+
* Larger models (e.g., `mistralai/Mistral-7B-v0.1`) generally need a GPU with enough VRAM.
|
| 80 |
+
2. **Prompt**: enter your starting text.
|
| 81 |
+
3. **Generate**: click **Generate** to produce a continuation.
|
| 82 |
+
4. **Inspect**: select any **generated word** (radio buttons).
|
| 83 |
+
|
| 84 |
+
* The paragraph box highlights where that word attends.
|
| 85 |
+
* Toggle **Mean Across Layers/Heads** or choose a specific **layer/head**.
|
| 86 |
+
5. Repeat with different models or prompts.
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
+
|
| 90 |
+
## 🧩 Files
|
| 91 |
+
|
| 92 |
+
* `app.py` — Gradio application (UI + model loading + attention visualization).
|
| 93 |
+
* `requirements.txt` — Python dependencies (see above).
|
| 94 |
+
* `README.md` — this file.
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## 🛠️ Troubleshooting
|
| 99 |
+
|
| 100 |
+
* **Radio/choices error**: If you switch models and see a Gradio “value not in choices” error, ensure the app resets the radio with `value=None` (the included code already does this).
|
| 101 |
+
* **`<|endoftext|>` shows up**: The app strips **trailing** special tokens from the generated segment, so EOS shouldn’t appear. If you still see it in the middle, your model truly generated it as a token.
|
| 102 |
+
* **OOM / model too large**:
|
| 103 |
+
|
| 104 |
+
* Try a smaller model (`distilgpt2`, `gpt2`, `facebook/opt-125m`).
|
| 105 |
+
* Reduce `Max New Tokens`.
|
| 106 |
+
* Use CPU for smaller models or a GPU with more VRAM for bigger ones.
|
| 107 |
+
* **Slow generation**: Smaller models or CPU mode will be slower; consider using GPU and the `accelerate` package.
|
| 108 |
+
* **Missing tokenizer pad token**: The app sets `pad_token_id = eos_token_id` automatically when needed.
|
| 109 |
+
|
| 110 |
+
---
|
| 111 |
+
|
| 112 |
+
## 🔒 Access-gated models
|
| 113 |
+
|
| 114 |
+
Some families (e.g., **LLaMA**, **Gemma**) require you to accept licenses or request access on Hugging Face. Make sure your Hugging Face account has access before trying to load those models.
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
## 📣 Acknowledgments
|
| 120 |
+
|
| 121 |
+
* Built with [Gradio](https://www.gradio.app/) and [Hugging Face Transformers](https://huggingface.co/docs/transformers).
|
| 122 |
+
* Attention visualization inspired by standard causal LM attention tensors available from `generate(output_attentions=True)`.
|
app.py
ADDED
|
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
"""
|
| 3 |
+
Gradio word-level attention visualizer with:
|
| 4 |
+
- Paragraph-style wrapping and semi-transparent backgrounds per word
|
| 5 |
+
- Proper detokenization to words (regex)
|
| 6 |
+
- Ability to pick from many causal LMs
|
| 7 |
+
- Trailing EOS/PAD special tokens removed (no <|endoftext|> shown)
|
| 8 |
+
- FIX: safely reset Radio with value=None to avoid Gradio choices error
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import re
|
| 12 |
+
from typing import List, Tuple
|
| 13 |
+
|
| 14 |
+
import gradio as gr
|
| 15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
|
| 19 |
+
# =========================
|
| 20 |
+
# Config
|
| 21 |
+
# =========================
|
| 22 |
+
ALLOWED_MODELS = [
|
| 23 |
+
# ---- GPT-2 family
|
| 24 |
+
"gpt2", "distilgpt2", "gpt2-medium", "gpt2-large", "gpt2-xl",
|
| 25 |
+
# ---- EleutherAI (Neo/J/NeoX/Pythia)
|
| 26 |
+
"EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B",
|
| 27 |
+
"EleutherAI/gpt-j-6B", "EleutherAI/gpt-neox-20b",
|
| 28 |
+
"EleutherAI/pythia-70m", "EleutherAI/pythia-160m", "EleutherAI/pythia-410m",
|
| 29 |
+
"EleutherAI/pythia-1b", "EleutherAI/pythia-1.4b", "EleutherAI/pythia-2.8b",
|
| 30 |
+
"EleutherAI/pythia-6.9b", "EleutherAI/pythia-12b",
|
| 31 |
+
# ---- Meta OPT
|
| 32 |
+
"facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b",
|
| 33 |
+
"facebook/opt-6.7b", "facebook/opt-13b", "facebook/opt-30b",
|
| 34 |
+
# ---- Mistral
|
| 35 |
+
"mistralai/Mistral-7B-v0.1", "mistralai/Mistral-7B-v0.3", "mistralai/Mistral-7B-Instruct-v0.2",
|
| 36 |
+
# ---- TinyLlama / OpenLLaMA
|
| 37 |
+
"TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
|
| 38 |
+
"openlm-research/open_llama_3b", "openlm-research/open_llama_7b",
|
| 39 |
+
# ---- Microsoft Phi
|
| 40 |
+
"microsoft/phi-1", "microsoft/phi-1_5", "microsoft/phi-2",
|
| 41 |
+
# ---- Qwen
|
| 42 |
+
"Qwen/Qwen1.5-0.5B", "Qwen/Qwen1.5-1.8B", "Qwen/Qwen1.5-4B", "Qwen/Qwen1.5-7B",
|
| 43 |
+
"Qwen/Qwen2-1.5B", "Qwen/Qwen2-7B",
|
| 44 |
+
# ---- MPT
|
| 45 |
+
"mosaicml/mpt-7b", "mosaicml/mpt-7b-instruct",
|
| 46 |
+
# ---- Falcon
|
| 47 |
+
"tiiuae/falcon-7b", "tiiuae/falcon-7b-instruct", "tiiuae/falcon-40b",
|
| 48 |
+
# ---- Cerebras GPT
|
| 49 |
+
"cerebras/Cerebras-GPT-111M", "cerebras/Cerebras-GPT-256M",
|
| 50 |
+
"cerebras/Cerebras-GPT-590M", "cerebras/Cerebras-GPT-1.3B", "cerebras/Cerebras-GPT-2.7B",
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
+
model = None
|
| 55 |
+
tokenizer = None
|
| 56 |
+
|
| 57 |
+
# Word regex (words + punctuation)
|
| 58 |
+
WORD_RE = re.compile(r"\w+(?:'\w+)?|[^\w\s]")
|
| 59 |
+
|
| 60 |
+
# =========================
|
| 61 |
+
# Model loading
|
| 62 |
+
# =========================
|
| 63 |
+
def _safe_set_attn_impl(m):
|
| 64 |
+
try:
|
| 65 |
+
m.config._attn_implementation = "eager"
|
| 66 |
+
except Exception:
|
| 67 |
+
pass
|
| 68 |
+
|
| 69 |
+
def load_model(model_name: str):
|
| 70 |
+
"""Load tokenizer+model globally."""
|
| 71 |
+
global model, tokenizer
|
| 72 |
+
try:
|
| 73 |
+
del model
|
| 74 |
+
torch.cuda.empty_cache()
|
| 75 |
+
except Exception:
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 79 |
+
# Ensure pad token id
|
| 80 |
+
if tokenizer.pad_token_id is None:
|
| 81 |
+
if tokenizer.eos_token_id is not None:
|
| 82 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 83 |
+
else:
|
| 84 |
+
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
| 85 |
+
|
| 86 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 87 |
+
_safe_set_attn_impl(model)
|
| 88 |
+
if hasattr(model, "resize_token_embeddings") and tokenizer.pad_token_id >= model.get_input_embeddings().num_embeddings:
|
| 89 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 90 |
+
model.eval()
|
| 91 |
+
model.to(device)
|
| 92 |
+
|
| 93 |
+
def model_heads_layers():
|
| 94 |
+
try:
|
| 95 |
+
L = int(getattr(model.config, "num_hidden_layers", 12))
|
| 96 |
+
except Exception:
|
| 97 |
+
L = 12
|
| 98 |
+
try:
|
| 99 |
+
H = int(getattr(model.config, "num_attention_heads", 12))
|
| 100 |
+
except Exception:
|
| 101 |
+
H = 12
|
| 102 |
+
return max(1, L), max(1, H)
|
| 103 |
+
|
| 104 |
+
# =========================
|
| 105 |
+
# Attention utils
|
| 106 |
+
# =========================
|
| 107 |
+
def get_attention_for_token_layer(
|
| 108 |
+
attentions,
|
| 109 |
+
token_index,
|
| 110 |
+
layer_index,
|
| 111 |
+
batch_index=0,
|
| 112 |
+
head_index=0,
|
| 113 |
+
mean_across_layers=True,
|
| 114 |
+
mean_across_heads=True,
|
| 115 |
+
):
|
| 116 |
+
"""
|
| 117 |
+
attentions: tuple length = #generated tokens
|
| 118 |
+
attentions[t] -> tuple of len = num_layers, each: (batch, heads, q, k)
|
| 119 |
+
"""
|
| 120 |
+
token_attention = attentions[token_index]
|
| 121 |
+
|
| 122 |
+
if mean_across_layers:
|
| 123 |
+
layer_attention = torch.stack(token_attention).mean(dim=0) # (batch, heads, q, k)
|
| 124 |
+
else:
|
| 125 |
+
layer_attention = token_attention[int(layer_index)] # (batch, heads, q, k)
|
| 126 |
+
|
| 127 |
+
batch_attention = layer_attention[int(batch_index)] # (heads, q, k)
|
| 128 |
+
|
| 129 |
+
if mean_across_heads:
|
| 130 |
+
head_attention = batch_attention.mean(dim=0) # (q, k)
|
| 131 |
+
else:
|
| 132 |
+
head_attention = batch_attention[int(head_index)] # (q, k)
|
| 133 |
+
|
| 134 |
+
return head_attention.squeeze(0) # q==1 -> (k,)
|
| 135 |
+
|
| 136 |
+
# =========================
|
| 137 |
+
# Tokens -> words mapping
|
| 138 |
+
# =========================
|
| 139 |
+
def _words_and_map_from_tokens(gen_token_ids: List[int]) -> Tuple[List[str], List[int]]:
|
| 140 |
+
"""
|
| 141 |
+
From *generated* token ids, return:
|
| 142 |
+
- words: detokenized words (regex-split)
|
| 143 |
+
- word2tok: list where word2tok[i] = index (relative to generated) of the
|
| 144 |
+
LAST token that composes that word.
|
| 145 |
+
"""
|
| 146 |
+
if not gen_token_ids:
|
| 147 |
+
return [], []
|
| 148 |
+
|
| 149 |
+
gen_tokens_str = tokenizer.convert_ids_to_tokens(gen_token_ids)
|
| 150 |
+
detok_text = tokenizer.convert_tokens_to_string(gen_tokens_str)
|
| 151 |
+
|
| 152 |
+
words = WORD_RE.findall(detok_text)
|
| 153 |
+
|
| 154 |
+
enc = tokenizer(detok_text, return_offsets_mapping=True, add_special_tokens=False)
|
| 155 |
+
tok_offsets = enc["offset_mapping"]
|
| 156 |
+
n = min(len(tok_offsets), len(gen_token_ids))
|
| 157 |
+
|
| 158 |
+
spans = [m.span() for m in re.finditer(WORD_RE, detok_text)]
|
| 159 |
+
|
| 160 |
+
word2tok: List[int] = []
|
| 161 |
+
t = 0
|
| 162 |
+
for (ws, we) in spans:
|
| 163 |
+
last_t = None
|
| 164 |
+
while t < n:
|
| 165 |
+
ts, te = tok_offsets[t]
|
| 166 |
+
if not (te <= ws or ts >= we):
|
| 167 |
+
last_t = t
|
| 168 |
+
t += 1
|
| 169 |
+
else:
|
| 170 |
+
if te <= ws:
|
| 171 |
+
t += 1
|
| 172 |
+
else:
|
| 173 |
+
break
|
| 174 |
+
if last_t is None:
|
| 175 |
+
last_t = max(0, min(n - 1, t - 1))
|
| 176 |
+
word2tok.append(int(last_t))
|
| 177 |
+
|
| 178 |
+
return words, word2tok
|
| 179 |
+
|
| 180 |
+
# =========================
|
| 181 |
+
# Helpers
|
| 182 |
+
# =========================
|
| 183 |
+
def _strip_trailing_special(ids: List[int]) -> List[int]:
|
| 184 |
+
"""Remove trailing EOS/PAD/other special tokens from the generated ids."""
|
| 185 |
+
specials = set(getattr(tokenizer, "all_special_ids", []) or [])
|
| 186 |
+
j = len(ids)
|
| 187 |
+
while j > 0 and ids[j - 1] in specials:
|
| 188 |
+
j -= 1
|
| 189 |
+
return ids[:j]
|
| 190 |
+
|
| 191 |
+
def clamp01(x: float) -> float:
|
| 192 |
+
x = float(x)
|
| 193 |
+
return 0.0 if x < 0 else 1.0 if x > 1 else x
|
| 194 |
+
|
| 195 |
+
# =========================
|
| 196 |
+
# Visualization (WORD-LEVEL)
|
| 197 |
+
# =========================
|
| 198 |
+
def generate_word_visualization(words: List[str],
|
| 199 |
+
abs_word_ends: List[int],
|
| 200 |
+
attention_values: np.ndarray,
|
| 201 |
+
selected_token_abs_idx: int) -> str:
|
| 202 |
+
"""
|
| 203 |
+
Paragraph-style visualization over words.
|
| 204 |
+
For each word, aggregate attention over its composing tokens (sum),
|
| 205 |
+
normalize across words, and render opacity as a semi-transparent background.
|
| 206 |
+
"""
|
| 207 |
+
if not words or attention_values is None or len(attention_values) == 0:
|
| 208 |
+
return (
|
| 209 |
+
"<div style='width:100%;'>"
|
| 210 |
+
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 211 |
+
" <div style='color:#ddd;'>No attention values.</div>"
|
| 212 |
+
" </div>"
|
| 213 |
+
"</div>"
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Start..end spans from ends
|
| 217 |
+
starts = []
|
| 218 |
+
for i, end in enumerate(abs_word_ends):
|
| 219 |
+
if i == 0:
|
| 220 |
+
starts.append(0)
|
| 221 |
+
else:
|
| 222 |
+
starts.append(min(abs_word_ends[i - 1] + 1, end))
|
| 223 |
+
|
| 224 |
+
# Sum attention per word
|
| 225 |
+
word_scores = []
|
| 226 |
+
for i, end in enumerate(abs_word_ends):
|
| 227 |
+
start = starts[i]
|
| 228 |
+
if start > end:
|
| 229 |
+
start = end
|
| 230 |
+
s = max(0, min(start, len(attention_values) - 1))
|
| 231 |
+
e = max(0, min(end, len(attention_values) - 1))
|
| 232 |
+
if e < s:
|
| 233 |
+
s, e = e, s
|
| 234 |
+
word_scores.append(float(attention_values[s:e + 1].sum()))
|
| 235 |
+
|
| 236 |
+
max_attn = max(0.1, float(max(word_scores)) if word_scores else 0.0)
|
| 237 |
+
|
| 238 |
+
# Which word holds the selected token?
|
| 239 |
+
selected_word_idx = None
|
| 240 |
+
for i, end in enumerate(abs_word_ends):
|
| 241 |
+
if selected_token_abs_idx <= end:
|
| 242 |
+
selected_word_idx = i
|
| 243 |
+
break
|
| 244 |
+
if selected_word_idx is None and abs_word_ends:
|
| 245 |
+
selected_word_idx = len(abs_word_ends) - 1
|
| 246 |
+
|
| 247 |
+
spans = []
|
| 248 |
+
for i, w in enumerate(words):
|
| 249 |
+
alpha = min(1.0, word_scores[i] / max_attn) if max_attn > 0 else 0.0
|
| 250 |
+
bg = f"rgba(66,133,244,{alpha:.3f})"
|
| 251 |
+
border = "2px solid #fff" if i == selected_word_idx else "1px solid transparent"
|
| 252 |
+
spans.append(
|
| 253 |
+
f"<span style='display:inline-block;background:{bg};border:{border};"
|
| 254 |
+
f"border-radius:6px;padding:2px 6px;margin:2px 4px 4px 0;color:#fff;'>"
|
| 255 |
+
f"{w}</span>"
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
return (
|
| 259 |
+
"<div style='width:100%;'>"
|
| 260 |
+
" <div style='background:#444;border:1px solid #eee;border-radius:8px;padding:10px;'>"
|
| 261 |
+
" <div style='white-space:normal;line-height:1.8;'>"
|
| 262 |
+
f" {''.join(spans)}"
|
| 263 |
+
" </div>"
|
| 264 |
+
" </div>"
|
| 265 |
+
"</div>"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
# =========================
|
| 269 |
+
# Core functions
|
| 270 |
+
# =========================
|
| 271 |
+
def run_generation(prompt, max_new_tokens, temperature, top_p):
|
| 272 |
+
"""Generate and prepare word-level selector + initial visualization."""
|
| 273 |
+
inputs = tokenizer(prompt or "", return_tensors="pt").to(device)
|
| 274 |
+
prompt_len = inputs["input_ids"].shape[1]
|
| 275 |
+
|
| 276 |
+
with torch.no_grad():
|
| 277 |
+
outputs = model.generate(
|
| 278 |
+
**inputs,
|
| 279 |
+
max_new_tokens=int(max_new_tokens),
|
| 280 |
+
temperature=float(temperature),
|
| 281 |
+
top_p=float(top_p),
|
| 282 |
+
do_sample=True,
|
| 283 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 284 |
+
output_attentions=True,
|
| 285 |
+
return_dict_in_generate=True,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
all_token_ids = outputs.sequences[0].tolist()
|
| 289 |
+
generated_token_ids = _strip_trailing_special(all_token_ids[prompt_len:])
|
| 290 |
+
|
| 291 |
+
# Words and map (word -> last generated token index)
|
| 292 |
+
words, word2tok = _words_and_map_from_tokens(generated_token_ids)
|
| 293 |
+
|
| 294 |
+
display_choices = [(w, i) for i, w in enumerate(words)]
|
| 295 |
+
if not display_choices:
|
| 296 |
+
return {
|
| 297 |
+
state_attentions: None,
|
| 298 |
+
state_all_token_ids: None,
|
| 299 |
+
state_prompt_len: 0,
|
| 300 |
+
state_words: None,
|
| 301 |
+
state_word2tok: None,
|
| 302 |
+
# SAFE RADIO RESET
|
| 303 |
+
radio_word_selector: gr.update(choices=[], value=None),
|
| 304 |
+
html_visualization: "<div style='text-align:center;padding:20px;'>No new tokens generated.</div>",
|
| 305 |
+
}
|
| 306 |
+
|
| 307 |
+
first_word_idx = 0
|
| 308 |
+
html_init = update_visualization(
|
| 309 |
+
first_word_idx,
|
| 310 |
+
outputs.attentions,
|
| 311 |
+
all_token_ids,
|
| 312 |
+
prompt_len,
|
| 313 |
+
0, 0, True, True,
|
| 314 |
+
words,
|
| 315 |
+
word2tok,
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
return {
|
| 319 |
+
state_attentions: outputs.attentions,
|
| 320 |
+
state_all_token_ids: all_token_ids,
|
| 321 |
+
state_prompt_len: prompt_len,
|
| 322 |
+
state_words: words,
|
| 323 |
+
state_word2tok: word2tok,
|
| 324 |
+
radio_word_selector: gr.update(choices=display_choices, value=first_word_idx),
|
| 325 |
+
html_visualization: html_init,
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
def update_visualization(
|
| 329 |
+
selected_word_index,
|
| 330 |
+
attentions,
|
| 331 |
+
all_token_ids,
|
| 332 |
+
prompt_len,
|
| 333 |
+
layer,
|
| 334 |
+
head,
|
| 335 |
+
mean_layers,
|
| 336 |
+
mean_heads,
|
| 337 |
+
words,
|
| 338 |
+
word2tok,
|
| 339 |
+
):
|
| 340 |
+
"""Recompute visualization for the chosen word (maps to its last token)."""
|
| 341 |
+
if selected_word_index is None or attentions is None or word2tok is None:
|
| 342 |
+
return "<div style='text-align:center;padding:20px;'>Generate text first.</div>"
|
| 343 |
+
|
| 344 |
+
widx = int(selected_word_index)
|
| 345 |
+
if not (0 <= widx < len(word2tok)):
|
| 346 |
+
return "<div style='text-align:center;padding:20px;'>Invalid selection.</div>"
|
| 347 |
+
|
| 348 |
+
token_index_relative = int(word2tok[widx])
|
| 349 |
+
token_index_absolute = int(prompt_len) + token_index_relative
|
| 350 |
+
|
| 351 |
+
token_attn = get_attention_for_token_layer(
|
| 352 |
+
attentions,
|
| 353 |
+
token_index=token_index_relative,
|
| 354 |
+
layer_index=int(layer),
|
| 355 |
+
head_index=int(head),
|
| 356 |
+
mean_across_layers=bool(mean_layers),
|
| 357 |
+
mean_across_heads=bool(mean_heads),
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
attn_vals = token_attn.detach().cpu().numpy()
|
| 361 |
+
|
| 362 |
+
# Pad attention to full (prompt + generated) length
|
| 363 |
+
total_tokens = len(all_token_ids)
|
| 364 |
+
padded = np.zeros(total_tokens, dtype=float)
|
| 365 |
+
if attn_vals.ndim == 2:
|
| 366 |
+
attn_vals = attn_vals[-1]
|
| 367 |
+
padded[: len(attn_vals)] = attn_vals
|
| 368 |
+
|
| 369 |
+
# Absolute word ends (prompt offset + relative token index)
|
| 370 |
+
abs_word_ends = [int(prompt_len) + int(t) for t in (word2tok or [])]
|
| 371 |
+
|
| 372 |
+
return generate_word_visualization(words, abs_word_ends, padded, token_index_absolute)
|
| 373 |
+
|
| 374 |
+
def toggle_slider(is_mean):
|
| 375 |
+
return gr.update(interactive=not bool(is_mean))
|
| 376 |
+
|
| 377 |
+
# =========================
|
| 378 |
+
# Gradio UI
|
| 379 |
+
# =========================
|
| 380 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 381 |
+
gr.Markdown("# 🤖 Word-Level Attention Visualizer — choose a model & explore")
|
| 382 |
+
gr.Markdown(
|
| 383 |
+
"Pick a model, generate text, then select a **generated word** to see where it attends. "
|
| 384 |
+
"Words wrap in a paragraph; opacity is the summed attention over the word’s tokens. "
|
| 385 |
+
"EOS tokens are stripped so `<|endoftext|>` doesn’t appear."
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
# States
|
| 389 |
+
state_attentions = gr.State(None)
|
| 390 |
+
state_all_token_ids = gr.State(None)
|
| 391 |
+
state_prompt_len = gr.State(None)
|
| 392 |
+
state_words = gr.State(None)
|
| 393 |
+
state_word2tok = gr.State(None)
|
| 394 |
+
state_model_name = gr.State(None)
|
| 395 |
+
|
| 396 |
+
with gr.Row():
|
| 397 |
+
with gr.Column(scale=1):
|
| 398 |
+
gr.Markdown("### 0) Model")
|
| 399 |
+
dd_model = gr.Dropdown(
|
| 400 |
+
ALLOWED_MODELS, value=ALLOWED_MODELS[0], label="Causal LM",
|
| 401 |
+
info="Models that work with AutoModelForCausalLM + attentions"
|
| 402 |
+
)
|
| 403 |
+
btn_load = gr.Button("Load / Switch Model", variant="secondary")
|
| 404 |
+
|
| 405 |
+
gr.Markdown("### 1) Generation")
|
| 406 |
+
txt_prompt = gr.Textbox("In a distant future, humanity", label="Prompt")
|
| 407 |
+
btn_generate = gr.Button("Generate", variant="primary")
|
| 408 |
+
slider_max_tokens = gr.Slider(10, 200, value=50, step=10, label="Max New Tokens")
|
| 409 |
+
slider_temp = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
|
| 410 |
+
slider_top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top P")
|
| 411 |
+
|
| 412 |
+
gr.Markdown("### 2) Attention")
|
| 413 |
+
check_mean_layers = gr.Checkbox(True, label="Mean Across Layers")
|
| 414 |
+
check_mean_heads = gr.Checkbox(True, label="Mean Across Heads")
|
| 415 |
+
slider_layer = gr.Slider(0, 11, value=0, step=1, label="Layer", interactive=False)
|
| 416 |
+
slider_head = gr.Slider(0, 11, value=0, step=1, label="Head", interactive=False)
|
| 417 |
+
|
| 418 |
+
with gr.Column(scale=3):
|
| 419 |
+
radio_word_selector = gr.Radio(
|
| 420 |
+
[], label="Select Generated Word to Visualize",
|
| 421 |
+
info="Click Generate to populate"
|
| 422 |
+
)
|
| 423 |
+
html_visualization = gr.HTML(
|
| 424 |
+
"<div style='text-align:center;padding:20px;color:#888;border:1px dashed #888;border-radius:8px;'>"
|
| 425 |
+
"Attention visualization will appear here.</div>"
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
# Load/switch model
|
| 429 |
+
def on_load_model(selected_name, mean_layers, mean_heads):
|
| 430 |
+
load_model(selected_name)
|
| 431 |
+
L, H = model_heads_layers()
|
| 432 |
+
return (
|
| 433 |
+
selected_name, # state_model_name
|
| 434 |
+
gr.update(minimum=0, maximum=L - 1, value=0, interactive=not bool(mean_layers)),
|
| 435 |
+
gr.update(minimum=0, maximum=H - 1, value=0, interactive=not bool(mean_heads)),
|
| 436 |
+
# SAFE RADIO RESET (avoid Value: [] not in choices)
|
| 437 |
+
gr.update(choices=[], value=None),
|
| 438 |
+
"<div style='text-align:center;padding:20px;'>Model loaded. Generate to visualize.</div>",
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
btn_load.click(
|
| 442 |
+
fn=on_load_model,
|
| 443 |
+
inputs=[dd_model, check_mean_layers, check_mean_heads],
|
| 444 |
+
outputs=[state_model_name, slider_layer, slider_head, radio_word_selector, html_visualization],
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# Load default model at app start
|
| 448 |
+
def _init_model(_):
|
| 449 |
+
load_model(ALLOWED_MODELS[0])
|
| 450 |
+
L, H = model_heads_layers()
|
| 451 |
+
return (
|
| 452 |
+
ALLOWED_MODELS[0],
|
| 453 |
+
gr.update(minimum=0, maximum=L - 1, value=0, interactive=False if check_mean_layers.value else True),
|
| 454 |
+
gr.update(minimum=0, maximum=H - 1, value=0, interactive=False if check_mean_heads.value else True),
|
| 455 |
+
# Also ensure radio is clean at start
|
| 456 |
+
gr.update(choices=[], value=None),
|
| 457 |
+
)
|
| 458 |
+
demo.load(_init_model, inputs=[gr.State(None)], outputs=[state_model_name, slider_layer, slider_head, radio_word_selector])
|
| 459 |
+
|
| 460 |
+
# Generate
|
| 461 |
+
btn_generate.click(
|
| 462 |
+
fn=run_generation,
|
| 463 |
+
inputs=[txt_prompt, slider_max_tokens, slider_temp, slider_top_p],
|
| 464 |
+
outputs=[
|
| 465 |
+
state_attentions,
|
| 466 |
+
state_all_token_ids,
|
| 467 |
+
state_prompt_len,
|
| 468 |
+
state_words,
|
| 469 |
+
state_word2tok,
|
| 470 |
+
radio_word_selector,
|
| 471 |
+
html_visualization,
|
| 472 |
+
],
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
# Update viz on any control
|
| 476 |
+
for control in [radio_word_selector, slider_layer, slider_head, check_mean_layers, check_mean_heads]:
|
| 477 |
+
control.change(
|
| 478 |
+
fn=update_visualization,
|
| 479 |
+
inputs=[
|
| 480 |
+
radio_word_selector,
|
| 481 |
+
state_attentions,
|
| 482 |
+
state_all_token_ids,
|
| 483 |
+
state_prompt_len,
|
| 484 |
+
slider_layer,
|
| 485 |
+
slider_head,
|
| 486 |
+
check_mean_layers,
|
| 487 |
+
check_mean_heads,
|
| 488 |
+
state_words,
|
| 489 |
+
state_word2tok,
|
| 490 |
+
],
|
| 491 |
+
outputs=html_visualization,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
# Toggle slider interactivity
|
| 495 |
+
check_mean_layers.change(toggle_slider, check_mean_layers, slider_layer)
|
| 496 |
+
check_mean_heads.change(toggle_slider, check_mean_heads, slider_head)
|
| 497 |
+
|
| 498 |
+
if __name__ == "__main__":
|
| 499 |
+
print(f"Device: {device}")
|
| 500 |
+
# Ensure a default model is ready
|
| 501 |
+
load_model(ALLOWED_MODELS[0])
|
| 502 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
gradio
|
| 3 |
+
torch
|