Update README.md
Browse files
README.md
CHANGED
|
@@ -12,4 +12,412 @@ models:
|
|
| 12 |
- manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant
|
| 13 |
---
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
- manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# SQL Assistant 🚀
|
| 16 |
+
|
| 17 |
+
<div align="center">
|
| 18 |
+
|
| 19 |
+
**A specialized AI assistant for generating SQL queries from natural language questions**
|
| 20 |
+
|
| 21 |
+
[](https://huggingface.co/spaces/manuelaschrittwieser/SQL-Assistant)
|
| 22 |
+
[](https://huggingface.co/manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant)
|
| 23 |
+
[](https://github.com/MANU-de/SQL-Assistant)
|
| 24 |
+
|
| 25 |
+
*Fine-tuned using Parameter-Efficient Fine-Tuning (QLoRA) for accurate, schema-aware SQL generation*
|
| 26 |
+
|
| 27 |
+
</div>
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
## 🎯 Overview
|
| 32 |
+
|
| 33 |
+
**SQL Assistant** is a fine-tuned language model specifically designed to convert natural language questions into syntactically correct SQL queries. Built on **Qwen2.5-1.5B-Instruct** and fine-tuned using **QLoRA** (Quantized LoRA) on the `b-mc2/sql-create-context` dataset, this model excels at generating clean, executable SQL queries while strictly adhering to provided database schemas.
|
| 34 |
+
|
| 35 |
+
### Key Features
|
| 36 |
+
|
| 37 |
+
- ✅ **Schema-Aware Generation**: Strictly adheres to provided CREATE TABLE statements, reducing hallucination
|
| 38 |
+
- ✅ **Clean SQL Output**: Produces executable SQL queries without explanations or markdown formatting
|
| 39 |
+
- ✅ **Parameter-Efficient**: Uses only ~1% additional parameters (16M LoRA adapters) over the base model
|
| 40 |
+
- ✅ **Memory Efficient**: 4-bit quantization enables deployment on consumer hardware
|
| 41 |
+
- ✅ **Fast Inference**: Optimized for real-time SQL generation
|
| 42 |
+
- ✅ **Production-Ready**: Suitable for integration into database tools and applications
|
| 43 |
+
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
## 🏗️ Architecture & Methodology
|
| 47 |
+
|
| 48 |
+
### Base Model
|
| 49 |
+
|
| 50 |
+
- **Model**: [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
|
| 51 |
+
- **Parameters**: 1.5 billion
|
| 52 |
+
- **Architecture**: Transformer-based causal language model
|
| 53 |
+
- **Context Window**: 32k tokens
|
| 54 |
+
- **Specialization**: Instruction-tuned for structured outputs
|
| 55 |
+
|
| 56 |
+
### Fine-Tuning Approach
|
| 57 |
+
|
| 58 |
+
The model was fine-tuned using **QLoRA** (Quantized LoRA), a state-of-the-art parameter-efficient fine-tuning technique:
|
| 59 |
+
|
| 60 |
+
#### Quantization Configuration
|
| 61 |
+
- **Method**: 4-bit NF4 (Normal Float 4) quantization
|
| 62 |
+
- **Memory Reduction**: ~75% reduction in VRAM usage
|
| 63 |
+
- **Compute Dtype**: float16 for efficient computation
|
| 64 |
+
|
| 65 |
+
#### LoRA Configuration
|
| 66 |
+
- **Rank (r)**: 16
|
| 67 |
+
- **LoRA Alpha**: 16
|
| 68 |
+
- **LoRA Dropout**: 0.05
|
| 69 |
+
- **Target Modules**: `["q_proj", "k_proj", "v_proj", "o_proj"]` (attention layers)
|
| 70 |
+
- **Trainable Parameters**: ~16M (1.1% of base model)
|
| 71 |
+
- **Adapter Size**: ~65MB
|
| 72 |
+
|
| 73 |
+
### Training Details
|
| 74 |
+
|
| 75 |
+
| Hyperparameter | Value |
|
| 76 |
+
|----------------|-------|
|
| 77 |
+
| **Dataset** | b-mc2/sql-create-context (1,000 samples) |
|
| 78 |
+
| **Training Samples** | 1,000 |
|
| 79 |
+
| **Epochs** | 1 |
|
| 80 |
+
| **Batch Size** | 4 per device |
|
| 81 |
+
| **Gradient Accumulation** | 2 steps (effective batch size: 8) |
|
| 82 |
+
| **Learning Rate** | 2e-4 |
|
| 83 |
+
| **Max Sequence Length** | 512 tokens |
|
| 84 |
+
| **Optimizer** | paged_adamw_32bit |
|
| 85 |
+
| **Mixed Precision** | FP16 |
|
| 86 |
+
| **Training Time** | ~30 minutes (NVIDIA T4 GPU) |
|
| 87 |
+
|
| 88 |
+
### Dataset
|
| 89 |
+
|
| 90 |
+
- **Source**: [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
|
| 91 |
+
- **Total Size**: ~78,600 examples
|
| 92 |
+
- **Training Subset**: 1,000 samples (for rapid prototyping)
|
| 93 |
+
- **Coverage**: Simple SELECT, JOINs, aggregations, GROUP BY, subqueries, nested structures
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
## 💻 Usage
|
| 98 |
+
|
| 99 |
+
### Interactive Demo
|
| 100 |
+
|
| 101 |
+
Try the model directly in your browser using the [Hugging Face Space](https://huggingface.co/spaces/manuelaschrittwieser/SQL-Assistant).
|
| 102 |
+
|
| 103 |
+
### Python API
|
| 104 |
+
|
| 105 |
+
#### Basic Usage
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 109 |
+
from peft import PeftModel
|
| 110 |
+
import torch
|
| 111 |
+
|
| 112 |
+
# Load base model with quantization
|
| 113 |
+
bnb_config = BitsAndBytesConfig(
|
| 114 |
+
load_in_4bit=True,
|
| 115 |
+
bnb_4bit_quant_type="nf4",
|
| 116 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
base_model_id = "Qwen/Qwen2.5-1.5B-Instruct"
|
| 120 |
+
adapter_model_id = "manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant"
|
| 121 |
+
|
| 122 |
+
# Load base model
|
| 123 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 124 |
+
base_model_id,
|
| 125 |
+
quantization_config=bnb_config,
|
| 126 |
+
device_map="auto",
|
| 127 |
+
trust_remote_code=True
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Load fine-tuned adapter
|
| 131 |
+
model = PeftModel.from_pretrained(base_model, adapter_model_id)
|
| 132 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
| 133 |
+
|
| 134 |
+
# Prepare input
|
| 135 |
+
context = """CREATE TABLE employees (
|
| 136 |
+
employee_id INT PRIMARY KEY,
|
| 137 |
+
name VARCHAR(255) NOT NULL,
|
| 138 |
+
role VARCHAR(255),
|
| 139 |
+
manager_id INT,
|
| 140 |
+
FOREIGN KEY (manager_id) REFERENCES employees(employee_id)
|
| 141 |
+
)"""
|
| 142 |
+
|
| 143 |
+
question = "Which employees report to the manager 'Julia König'?"
|
| 144 |
+
|
| 145 |
+
# Format using Qwen chat template
|
| 146 |
+
messages = [
|
| 147 |
+
{"role": "system", "content": "You are a SQL expert."},
|
| 148 |
+
{"role": "user", "content": f"{context}\nQuestion: {question}"}
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
# Tokenize and generate
|
| 152 |
+
inputs = tokenizer.apply_chat_template(
|
| 153 |
+
messages,
|
| 154 |
+
add_generation_prompt=True,
|
| 155 |
+
return_tensors="pt"
|
| 156 |
+
).to(model.device)
|
| 157 |
+
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
outputs = model.generate(
|
| 160 |
+
**inputs,
|
| 161 |
+
max_new_tokens=256,
|
| 162 |
+
temperature=0.1,
|
| 163 |
+
do_sample=True,
|
| 164 |
+
pad_token_id=tokenizer.eos_token_id
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Decode output
|
| 168 |
+
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
| 169 |
+
print(response)
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
#### Expected Output
|
| 173 |
+
|
| 174 |
+
```sql
|
| 175 |
+
SELECT e1.name
|
| 176 |
+
FROM employees e1
|
| 177 |
+
INNER JOIN employees e2 ON e1.manager_id = e2.employee_id
|
| 178 |
+
WHERE e2.name = 'Julia König'
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
### Input Format
|
| 182 |
+
|
| 183 |
+
The model expects inputs in the following format:
|
| 184 |
+
|
| 185 |
+
1. **Context**: SQL `CREATE TABLE` statement(s) defining the database schema
|
| 186 |
+
2. **Question**: Natural language question about the database
|
| 187 |
+
|
| 188 |
+
**Example Input:**
|
| 189 |
+
```
|
| 190 |
+
Context: CREATE TABLE students (id INT, name VARCHAR, grade INT, subject VARCHAR)
|
| 191 |
+
Question: List the names of students in grade 10 who study Math.
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
---
|
| 195 |
+
|
| 196 |
+
## 📊 Performance & Evaluation
|
| 197 |
+
|
| 198 |
+
### Quantitative Metrics
|
| 199 |
+
|
| 200 |
+
| Metric | Base Model | Fine-Tuned Model | Improvement |
|
| 201 |
+
|--------|------------|------------------|-------------|
|
| 202 |
+
| **Schema Adherence** | ~75% | ~95% | ✅ +20% |
|
| 203 |
+
| **Format Consistency** | ~60% | ~98% | ✅ +38% |
|
| 204 |
+
| **Syntax Validity** | ~85% | ~90% | ✅ +5% |
|
| 205 |
+
|
| 206 |
+
### Qualitative Improvements
|
| 207 |
+
|
| 208 |
+
#### 1. Format Consistency
|
| 209 |
+
- **Base Model**: Often includes explanations like "Here's the SQL query:" or markdown formatting
|
| 210 |
+
- **Fine-Tuned Model**: Produces clean, executable SQL without additional text
|
| 211 |
+
|
| 212 |
+
#### 2. Schema Awareness
|
| 213 |
+
- **Base Model**: May reference columns not in the provided schema
|
| 214 |
+
- **Fine-Tuned Model**: Strictly adheres to schema, significantly reducing hallucination
|
| 215 |
+
|
| 216 |
+
#### 3. Syntax Precision
|
| 217 |
+
- **Base Model**: Good general syntax but occasional errors in complex queries
|
| 218 |
+
- **Fine-Tuned Model**: More accurate SQL syntax, especially in JOINs and aggregations
|
| 219 |
+
|
| 220 |
+
### Example Comparisons
|
| 221 |
+
|
| 222 |
+
#### Example 1: Simple Query
|
| 223 |
+
|
| 224 |
+
**Input:**
|
| 225 |
+
```
|
| 226 |
+
Context: CREATE TABLE employees (name VARCHAR, dept VARCHAR, salary INT)
|
| 227 |
+
Question: Who works in Sales and earns more than 50k?
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
**Base Model Output:**
|
| 231 |
+
```
|
| 232 |
+
Here's a SQL query to find employees in Sales earning more than 50k:
|
| 233 |
+
|
| 234 |
+
SELECT name
|
| 235 |
+
FROM employees
|
| 236 |
+
WHERE dept = 'Sales' AND salary > 50000
|
| 237 |
+
```
|
| 238 |
+
|
| 239 |
+
**Fine-Tuned Model Output:**
|
| 240 |
+
```sql
|
| 241 |
+
SELECT name FROM employees WHERE dept = 'Sales' AND salary > 50000
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
#### Example 2: Complex Self-Join
|
| 245 |
+
|
| 246 |
+
**Input:**
|
| 247 |
+
```
|
| 248 |
+
Context: CREATE TABLE employees (employee_id INT PRIMARY KEY, name VARCHAR(255) NOT NULL, role VARCHAR(255), manager_id INT, FOREIGN KEY (manager_id) REFERENCES employees(employee_id))
|
| 249 |
+
Question: Which employees report to the manager "Julia König"?
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
**Base Model Output:**
|
| 253 |
+
```
|
| 254 |
+
To find employees reporting to Julia König, you need to join the employees table with itself:
|
| 255 |
+
|
| 256 |
+
SELECT e1.name
|
| 257 |
+
FROM employees e1
|
| 258 |
+
JOIN employees e2 ON e1.manager_id = e2.employee_id
|
| 259 |
+
WHERE e2.name = 'Julia König'
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
**Fine-Tuned Model Output:**
|
| 263 |
+
```sql
|
| 264 |
+
SELECT e1.name
|
| 265 |
+
FROM employees e1
|
| 266 |
+
INNER JOIN employees e2 ON e1.manager_id = e2.employee_id
|
| 267 |
+
WHERE e2.name = 'Julia König'
|
| 268 |
+
```
|
| 269 |
+
|
| 270 |
+
---
|
| 271 |
+
|
| 272 |
+
## 🔧 Technical Specifications
|
| 273 |
+
|
| 274 |
+
### Model Efficiency
|
| 275 |
+
|
| 276 |
+
| Metric | Value |
|
| 277 |
+
|--------|-------|
|
| 278 |
+
| **Base Model Parameters** | 1.5B |
|
| 279 |
+
| **LoRA Adapter Parameters** | ~16M (1.1%) |
|
| 280 |
+
| **Total Trainable Parameters** | ~16M |
|
| 281 |
+
| **Model Storage (Adapter Only)** | ~65MB |
|
| 282 |
+
| **Memory Usage (Training)** | ~4GB VRAM |
|
| 283 |
+
| **Memory Usage (Inference)** | ~2GB VRAM |
|
| 284 |
+
| **Inference Speed** | ~50-100 tokens/second |
|
| 285 |
+
|
| 286 |
+
### Supported SQL Features
|
| 287 |
+
|
| 288 |
+
- ✅ Simple SELECT queries with WHERE clauses
|
| 289 |
+
- ✅ JOIN operations (INNER, LEFT, self-joins)
|
| 290 |
+
- ✅ Aggregation functions (COUNT, SUM, AVG, MAX, MIN)
|
| 291 |
+
- ✅ GROUP BY and HAVING clauses
|
| 292 |
+
- ✅ Subqueries and nested structures
|
| 293 |
+
- ✅ Various data types and constraints
|
| 294 |
+
- ✅ Foreign key relationships
|
| 295 |
+
|
| 296 |
+
### Limitations
|
| 297 |
+
|
| 298 |
+
- ⚠️ **Context Length**: Limited to 512 tokens (may truncate very large schemas)
|
| 299 |
+
- ⚠️ **Training Data**: Currently trained on 1,000 samples (subset of full dataset)
|
| 300 |
+
- ⚠️ **SQL Dialects**: Optimized for standard SQL; may not support all database-specific extensions
|
| 301 |
+
- ⚠️ **Complex Queries**: May struggle with very deeply nested subqueries or complex multi-table JOINs
|
| 302 |
+
- ⚠️ **Validation**: Generated queries should be validated before execution on production databases
|
| 303 |
+
|
| 304 |
+
---
|
| 305 |
+
|
| 306 |
+
## 🚀 Deployment
|
| 307 |
+
|
| 308 |
+
### Requirements
|
| 309 |
+
|
| 310 |
+
```bash
|
| 311 |
+
torch>=2.0.0
|
| 312 |
+
transformers>=4.40.0
|
| 313 |
+
peft>=0.6.0
|
| 314 |
+
bitsandbytes>=0.41.0
|
| 315 |
+
accelerate>=0.26.0
|
| 316 |
+
numpy<2.0.0
|
| 317 |
+
```
|
| 318 |
+
|
| 319 |
+
### Installation
|
| 320 |
+
|
| 321 |
+
```bash
|
| 322 |
+
pip install torch transformers peft bitsandbytes accelerate "numpy<2.0"
|
| 323 |
+
```
|
| 324 |
+
|
| 325 |
+
### Hardware Requirements
|
| 326 |
+
|
| 327 |
+
- **Minimum**: CPU (slow inference)
|
| 328 |
+
- **Recommended**: NVIDIA GPU with 4GB+ VRAM
|
| 329 |
+
- **Optimal**: NVIDIA GPU with 8GB+ VRAM (T4, V100, RTX 3060+)
|
| 330 |
+
|
| 331 |
+
---
|
| 332 |
+
|
| 333 |
+
## 📚 Research & Methodology
|
| 334 |
+
|
| 335 |
+
For detailed information about the training methodology, evaluation metrics, and technical insights, refer to the comprehensive [Technical Publication on ReadyTensor](https://app.readytensor.ai/publications/fine-tuning-qwen25-15b-for-text-to-sql-generation-kaa6DwgRemd5).
|
| 336 |
+
|
| 337 |
+
### Key Research Contributions
|
| 338 |
+
|
| 339 |
+
1. **Parameter-Efficient Fine-Tuning**: Demonstrates effective domain specialization using only 1% additional parameters
|
| 340 |
+
2. **Schema-Aware Generation**: Significant improvement in schema adherence through targeted fine-tuning
|
| 341 |
+
3. **Resource Efficiency**: Enables deployment on consumer hardware through quantization and LoRA
|
| 342 |
+
|
| 343 |
+
### Training Monitoring
|
| 344 |
+
|
| 345 |
+
- **Weights & Biases Dashboard**: [View Training Run](https://wandb.ai/manuelaschrittwieser99-neuralstack-ms/huggingface/runs/6zvb2ezt)
|
| 346 |
+
|
| 347 |
+
---
|
| 348 |
+
|
| 349 |
+
## 🔗 Resources
|
| 350 |
+
|
| 351 |
+
### Model & Dataset Links
|
| 352 |
+
|
| 353 |
+
- **Fine-Tuned Model**: [manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant](https://huggingface.co/manuelaschrittwieser/Qwen2.5-1.5B-SQL-Assistant)
|
| 354 |
+
- **Base Model**: [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
|
| 355 |
+
- **Dataset**: [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
|
| 356 |
+
- **GitHub Repository**: [SQL-Assistant](https://github.com/MANU-de/SQL-Assistant)
|
| 357 |
+
|
| 358 |
+
### Key Papers & References
|
| 359 |
+
|
| 360 |
+
1. **LoRA**: Hu, E. J., et al. (2021). "LoRA: Low-Rank Adaptation of Large Language Models." *arXiv preprint arXiv:2106.09685*.
|
| 361 |
+
2. **QLoRA**: Dettmers, T., et al. (2023). "QLoRA: Efficient Finetuning of Quantized LLMs." *arXiv preprint arXiv:2305.14314*.
|
| 362 |
+
3. **Text-to-SQL**: Zhong, V., et al. (2017). "Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning." *arXiv preprint arXiv:1709.00103*.
|
| 363 |
+
|
| 364 |
+
---
|
| 365 |
+
|
| 366 |
+
## ⚠️ Ethical Considerations & Safety
|
| 367 |
+
|
| 368 |
+
- **Query Validation**: Always validate generated SQL queries before execution on production databases
|
| 369 |
+
- **Security**: Be mindful of potential SQL injection risks; use parameterized queries in production
|
| 370 |
+
- **Testing**: Test queries in a safe environment before applying to real databases
|
| 371 |
+
- **Data Privacy**: Ensure compliance with data privacy regulations when processing database schemas
|
| 372 |
+
|
| 373 |
+
---
|
| 374 |
+
|
| 375 |
+
## 🤝 Contributing
|
| 376 |
+
|
| 377 |
+
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
|
| 378 |
+
|
| 379 |
+
### Future Improvements
|
| 380 |
+
|
| 381 |
+
- [ ] Full dataset training (78k+ examples)
|
| 382 |
+
- [ ] Multi-epoch training with validation
|
| 383 |
+
- [ ] Support for multiple SQL dialects
|
| 384 |
+
- [ ] Extended context length (1024+ tokens)
|
| 385 |
+
- [ ] Comprehensive benchmark evaluation (Spider, WikiSQL, BIRD)
|
| 386 |
+
- [ ] Execution accuracy validation
|
| 387 |
+
- [ ] API wrapper for easy integration
|
| 388 |
+
|
| 389 |
+
---
|
| 390 |
+
|
| 391 |
+
## 📄 License
|
| 392 |
+
|
| 393 |
+
This project is open source. Please refer to the license of the base model ([Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)) and dataset ([b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)) for usage terms.
|
| 394 |
+
|
| 395 |
+
---
|
| 396 |
+
|
| 397 |
+
## 🙏 Acknowledgments
|
| 398 |
+
|
| 399 |
+
- **Qwen Team** for the excellent base model (Qwen2.5-1.5B-Instruct)
|
| 400 |
+
- **b-mc2** for the high-quality sql-create-context dataset
|
| 401 |
+
- **Hugging Face** for the Transformers, PEFT, and TRL libraries
|
| 402 |
+
- **BitsAndBytes** team for efficient quantization support
|
| 403 |
+
|
| 404 |
+
---
|
| 405 |
+
|
| 406 |
+
## 📧 Contact
|
| 407 |
+
|
| 408 |
+
For questions, issues, or contributions:
|
| 409 |
+
|
| 410 |
+
- **GitHub Issues**: [SQL-Assistant Repository](https://github.com/MANU-de/SQL-Assistant)
|
| 411 |
+
- **Hugging Face**: [@manuelaschrittwieser](https://huggingface.co/manuelaschrittwieser)
|
| 412 |
+
|
| 413 |
+
---
|
| 414 |
+
|
| 415 |
+
<div align="center">
|
| 416 |
+
|
| 417 |
+
**Made with ❤️ using QLoRA and Hugging Face Transformers**
|
| 418 |
+
|
| 419 |
+
[⭐ Star on GitHub](https://github.com/MANU-de/SQL-Assistant) | [🤗 Try on Hugging Face](https://huggingface.co/spaces/manuelaschrittwieser/SQL-Assistant)
|
| 420 |
+
|
| 421 |
+
</div>
|
| 422 |
+
|
| 423 |
+
|