Spaces:
Runtime error
Runtime error
| # app/models.py | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
| import torch | |
| # Load a domain-specific model (example: MatSciBERT for materials text) | |
| MATS_BERT_MODEL = "m3rg-iitd/matscibert" # adjust model name as needed | |
| tokenizer = AutoTokenizer.from_pretrained(MATS_BERT_MODEL) | |
| model = AutoModelForTokenClassification.from_pretrained(MATS_BERT_MODEL) | |
| # Create a pipeline for token classification (NER, relation extraction) | |
| ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") | |
| def extract_entities(text: str): | |
| """ | |
| Process text using a domain-specific BERT model to extract entities. | |
| """ | |
| results = ner_pipeline(text) | |
| # Format the output as a list of (entity, score, start, end) | |
| entities = [{"entity": r["entity_group"], "word": r["word"], "score": r["score"]} for r in results] | |
| return entities | |
| def answer_question(query: str): | |
| """ | |
| For demonstration, we use a simple approach. | |
| In practice, you may combine a retrieval step with a Q&A model. | |
| """ | |
| # For example purposes, we simulate an answer by echoing the query. | |
| # Replace this with your domain-specific Q&A logic. | |
| return f"Simulated answer for query: '{query}'" | |
| # Model loading and inference functions | |