Spaces:
Sleeping
Sleeping
File size: 31,809 Bytes
5a28e0a 95512f9 5a28e0a 95512f9 5a28e0a 95512f9 5a28e0a d901c02 5a28e0a 3fa88be 5a28e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import os
import tempfile
# β
CRITICAL: Set environment variables BEFORE any other imports
os.environ['TRANSFORMERS_CACHE'] = tempfile.gettempdir()
os.environ['HF_HOME'] = tempfile.gettempdir()
os.environ['TORCH_HOME'] = tempfile.gettempdir()
os.environ['HF_DATASETS_CACHE'] = tempfile.gettempdir()
os.environ['HUGGINGFACE_HUB_CACHE'] = tempfile.gettempdir()
import streamlit as st
# β
CRITICAL: set_page_config() MUST be called first, before ANY Streamlit commands
st.set_page_config(
page_title="AI Study Helper Pro - by Umaima Qureshi",
page_icon="π§ ",
layout="wide",
initial_sidebar_state="expanded"
)
# Now import other libraries
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification
from nltk.tokenize import sent_tokenize
import base64
import torch
import nltk
@st.cache_resource
def init_nltk():
"""Initialize NLTK with writable directory"""
nltk_data_dir = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_dir, exist_ok=True)
if nltk_data_dir not in nltk.data.path:
nltk.data.path.insert(0, nltk_data_dir)
for pkg in ["punkt", "punkt_tab"]:
try:
nltk.data.find(f"tokenizers/{pkg}")
except LookupError:
try:
nltk.download(pkg, download_dir=nltk_data_dir, quiet=True)
except:
pass # Continue if download fails
return True
# Initialize NLTK
init_nltk()
# Device detection
DEVICE = 0 if torch.cuda.is_available() else -1
# Lazy model loading with proper cache handling - FIXED (No cache_dir in pipeline)
@st.cache_resource
def get_summarizer():
"""Load summarization model - cache_dir handled by environment variables"""
try:
model = AutoModelForSeq2SeqLM.from_pretrained(
"sshleifer/distilbart-cnn-12-6",
cache_dir=tempfile.gettempdir()
)
tokenizer = AutoTokenizer.from_pretrained(
"sshleifer/distilbart-cnn-12-6",
cache_dir=tempfile.gettempdir()
)
summarizer = pipeline(
"summarization",
model=model,
tokenizer=tokenizer,
device=DEVICE
)
return summarizer
except Exception as e:
st.error(f"Failed to load summarizer: {str(e)}")
return None
@st.cache_resource
def get_qa():
"""Load Q&A model - cache_dir handled by environment variables"""
try:
model = AutoModelForQuestionAnswering.from_pretrained(
"distilbert-base-uncased-distilled-squad",
cache_dir=tempfile.gettempdir()
)
tokenizer = AutoTokenizer.from_pretrained(
"distilbert-base-uncased-distilled-squad",
cache_dir=tempfile.gettempdir()
)
qa_pipeline = pipeline(
"question-answering",
model=model,
tokenizer=tokenizer,
device=DEVICE
)
return qa_pipeline
except Exception as e:
st.error(f"Failed to load Q&A model: {str(e)}")
return None
@st.cache_resource
def get_classifier():
"""Load classifier model - cache_dir handled by environment variables"""
try:
model = AutoModelForSequenceClassification.from_pretrained(
"typeform/distilbert-base-uncased-mnli",
cache_dir=tempfile.gettempdir()
)
tokenizer = AutoTokenizer.from_pretrained(
"typeform/distilbert-base-uncased-mnli",
cache_dir=tempfile.gettempdir()
)
classifier = pipeline(
"zero-shot-classification",
model=model,
tokenizer=tokenizer,
device=DEVICE
)
return classifier
except Exception as e:
st.error(f"Failed to load classifier: {str(e)}")
return None
@st.cache_resource
def load_translator(model_name):
"""Load translation model - cache_dir handled by environment variables"""
try:
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
cache_dir=tempfile.gettempdir()
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
cache_dir=tempfile.gettempdir()
)
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
device=DEVICE
)
return translator
except Exception as e:
st.error(f"Failed to load translator: {str(e)}")
return None
def truncate_text(text, max_words=400):
"""Truncate text to maximum word count"""
words = text.split()
return (" ".join(words[:max_words]), len(words) > max_words)
# ULTRA PREMIUM CSS - Glassmorphism + Animations
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700;900&display=swap');
* {
font-family: 'Poppins', sans-serif;
}
.stApp {
background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #4facfe 75%, #00f2fe 100%);
background-size: 400% 400%;
animation: gradientShift 15s ease infinite;
}
@keyframes gradientShift {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
/* Hero Header */
.hero-header {
background: linear-gradient(135deg, #1e1e3f 0%, #2d2d5f 100%);
padding: 3rem 2rem;
border-radius: 25px;
margin-bottom: 2rem;
text-align: center;
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.5);
border: 2px solid #667eea;
}
.hero-title {
font-size: 3.5rem;
font-weight: 900;
color: #ffffff;
margin: 0 0 1rem 0;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.5);
}
.hero-subtitle {
font-size: 1.3rem;
color: #ffffff;
margin: 0;
font-weight: 400;
opacity: 0.95;
}
/* Premium Tabs */
.stTabs [data-baseweb="tab-list"] {
gap: 12px;
background: rgba(255, 255, 255, 0.1);
padding: 12px;
border-radius: 20px;
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.2);
}
.stTabs [data-baseweb="tab"] {
background: rgba(255, 255, 255, 0.15);
border-radius: 15px;
color: white;
font-weight: 600;
font-size: 1.1rem;
padding: 12px 24px;
border: 1px solid rgba(255, 255, 255, 0.25);
transition: all 0.3s ease;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
.stTabs [data-baseweb="tab"]:hover {
background: rgba(255, 255, 255, 0.25);
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
}
.stTabs [aria-selected="true"] {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-color: rgba(255, 255, 255, 0.4);
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4);
}
/* Premium Buttons */
.stButton > button {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-weight: 700;
font-size: 1.1rem;
padding: 16px 40px;
border-radius: 16px;
border: none;
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4);
transition: all 0.3s ease;
width: 100%;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
.stButton > button:hover {
transform: translateY(-3px);
box-shadow: 0 12px 36px rgba(102, 126, 234, 0.6);
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%);
}
.stButton > button:active {
transform: translateY(-1px);
}
/* Input Fields - FIXED: Black background for text areas */
.stTextArea textarea, .stTextInput input {
background: rgba(0, 0, 0, 0.85) !important;
backdrop-filter: blur(10px);
border: 2px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 16px !important;
color: white !important;
font-size: 1rem !important;
padding: 16px !important;
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.2);
}
.stTextArea textarea::placeholder, .stTextInput input::placeholder {
color: rgba(255, 255, 255, 0.6) !important;
}
.stTextArea textarea:focus, .stTextInput input:focus {
border-color: rgba(255, 255, 255, 0.6) !important;
box-shadow: 0 0 20px rgba(255, 255, 255, 0.3) !important;
background: rgba(0, 0, 0, 0.9) !important;
}
/* Result Cards */
.result-card {
background: rgba(255, 255, 255, 0.95);
color: #1a1a1a;
padding: 2rem;
border-radius: 20px;
margin: 1rem auto; /* Changed: 0 to auto */
max-width: 900px; /* Added this line */
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2);
animation: fadeIn 0.5s ease;
border-left: 5px solid #667eea;
}
.result-card p {
word-break: break-word;
overflow-wrap: break-word;
max-height: 200px; /* Changed: 300px to 200px */
overflow-y: auto;
line-height: 1.6; /* Added this line */
}
/* FIXED: Scrollable container for keywords with proper visibility */
.keywords-container {
max-height: 400px;
overflow-y: auto;
padding: 10px;
background: rgba(255, 255, 255, 0.05);
border-radius: 15px;
margin-top: 1rem;
}
/* FIXED: Quiz questions container with dark background and scrolling */
.quiz-container {
max-height: 500px;
overflow-y: auto;
padding: 10px;
}
.quiz-question-card {
background: rgba(30, 30, 60, 0.9) !important;
color: white !important;
padding: 1.5rem;
margin: 1rem 0;
border-radius: 15px;
border-left: 4px solid #667eea;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
}
.quiz-question-card strong {
color: #667eea !important;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(20px); }
to { opacity: 1; transform: translateY(0); }
}
/* Stats Badge */
.stats-badge {
display: inline-block;
background: rgba(255, 255, 255, 0.25);
backdrop-filter: blur(10px);
padding: 8px 20px;
border-radius: 20px;
color: white;
font-weight: 600;
border: 1px solid rgba(255, 255, 255, 0.3);
margin: 5px;
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3);
}
/* Success/Error Messages */
.stSuccess {
background: rgba(72, 187, 120, 0.25) !important;
backdrop-filter: blur(10px);
border-left: 4px solid #48bb78 !important;
border-radius: 12px !important;
color: white !important;
}
.stError {
background: rgba(245, 101, 101, 0.25) !important;
backdrop-filter: blur(10px);
border-left: 4px solid #f56565 !important;
border-radius: 12px !important;
color: white !important;
}
.stInfo {
background: rgba(66, 153, 225, 0.25) !important;
backdrop-filter: blur(10px);
border-left: 4px solid #4299e1 !important;
border-radius: 12px !important;
color: white !important;
}
.stWarning {
background: rgba(237, 137, 54, 0.25) !important;
backdrop-filter: blur(10px);
border-left: 4px solid #ed8936 !important;
border-radius: 12px !important;
color: white !important;
}
/* Sidebar */
.css-1d391kg, [data-testid="stSidebar"] {
background: rgba(20, 20, 40, 0.9);
backdrop-filter: blur(20px);
border-right: 1px solid rgba(255, 255, 255, 0.2);
}
.css-1d391kg h2, [data-testid="stSidebar"] h2 {
color: white;
font-weight: 700;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
}
.css-1d391kg p, [data-testid="stSidebar"] p {
color: rgba(255, 255, 255, 0.9);
}
/* Ensure text wraps properly */
.stTabs h3 {
word-break: break-word;
overflow-wrap: anywhere;
white-space: normal;
max-width: 100%;
margin: 0;
padding: 0.5rem 0;
color: white;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
}
/* Spinner */
.stSpinner > div {
border-top-color: white !important;
}
/* Selectbox */
.stSelectbox > div > div {
background: rgba(255, 255, 255, 0.2) !important;
backdrop-filter: blur(10px);
border-radius: 12px !important;
color: white !important;
border: 2px solid rgba(255, 255, 255, 0.3) !important;
}
.stSelectbox label {
color: white !important;
font-weight: 600 !important;
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3);
}
/* Footer */
.premium-footer {
text-align: center;
padding: 2rem;
margin-top: 3rem;
background: rgba(20, 20, 40, 0.85);
backdrop-filter: blur(15px);
border-radius: 20px;
border: 2px solid rgba(255, 255, 255, 0.3);
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
}
.premium-footer p {
color: rgba(255, 255, 255, 0.9);
margin: 0.5rem 0;
text-shadow: 0 1px 3px rgba(0, 0, 0, 0.3);
}
/* Hide Streamlit Branding */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
/* Custom scrollbar */
::-webkit-scrollbar {
width: 10px;
}
::-webkit-scrollbar-track {
background: rgba(255, 255, 255, 0.1);
}
::-webkit-scrollbar-thumb {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 5px;
}
::-webkit-scrollbar-thumb:hover {
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%);
}
</style>
""", unsafe_allow_html=True)
# Hero Header
st.markdown("""
<div class="hero-header">
<div class="hero-title">π§ AI Study Helper Pro</div>
<div class="hero-subtitle">β‘ Supercharge Your Learning with Advanced AI Technology</div>
</div>
""", unsafe_allow_html=True)
# Add cache clear button (for troubleshooting)
with st.expander("βοΈ Settings", expanded=False):
if st.button("π Clear Model Cache (if you see errors)"):
st.cache_resource.clear()
st.success("β
Cache cleared! Please refresh the page.")
st.info("π‘ This will reload all AI models on next use.")
# Sidebar
with st.sidebar:
st.markdown("### π― Dashboard")
st.markdown("---")
# Stats
col1, col2 = st.columns(2)
with col1:
st.markdown('<div class="stats-badge">π 247 Processed</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="stats-badge">β‘ 2.3s Avg</div>', unsafe_allow_html=True)
st.markdown("---")
st.markdown("### β¨ Features")
features = [
"π AI Summarization",
"π¬ Smart Q&A",
"π― Quiz Generator",
"π Multi-Language",
"π Keyword Extraction",
"π¨ Lightning Fast"
]
for feat in features:
st.markdown(f"**{feat}**")
st.markdown("---")
st.markdown("### π©βπ» Developer")
st.markdown("**Umaima Qureshi**")
st.markdown("[GitHub](https://github.com/Umaima122)")
# Initialize session state
for key in ["summary", "quiz", "translation", "keywords"]:
if key not in st.session_state:
st.session_state[key] = "" if key not in ["quiz", "keywords"] else []
# Tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"π Summarize", "π¬ Q&A", "π― Quiz", "π Translate", "π Keywords", "π₯ Download"
])
# ============================================
# TAB 1: SUMMARIZE
# ============================================
with tab1:
st.markdown("### π Intelligent Summarization")
text = st.text_area(
"βοΈ Your notes or textbook:",
value="",
height=250,
key="sum_txt",
placeholder="Paste your content here and watch AI magic happen..."
)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("β¨ Generate Summary", key="sum_btn"):
if not text.strip():
st.error("β οΈ Please provide text to summarize")
else:
trunc, was_trunc = truncate_text(text, 400)
if was_trunc:
st.info("π Text optimized to 400 words for processing")
if len(trunc.split()) < 20:
st.error("β οΈ Need at least 20 words to generate a meaningful summary")
else:
with st.spinner("π§ AI is thinking..."):
try:
summarizer = get_summarizer()
if summarizer:
result = summarizer(
trunc,
max_length=130,
min_length=30,
do_sample=False
)
summary = result[0]['summary_text']
st.markdown(f"""
<div class="result-card">
<h4 style="color: #667eea; margin-bottom: 1rem;">π AI-Generated Summary</h4>
<p style="font-size: 1.1rem; line-height: 1.8; color: #2d3748;">{summary}</p>
<div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;">
<span class="stats-badge" style="background: #667eea; color: white;">
{len(summary.split())} words
</span>
<span class="stats-badge" style="background: #48bb78; color: white;">
β Completed
</span>
</div>
</div>
""", unsafe_allow_html=True)
st.session_state["summary"] = summary
except Exception as e:
st.error(f"β Error generating summary: {str(e)}")
# ============================================
# TAB 2: Q&A
# ============================================
with tab2:
st.markdown("### π¬ Intelligent Q&A System")
context = st.text_area(
"π Context (Your notes):",
value="",
height=200,
key="qa_ctx",
placeholder="Paste your study material here..."
)
question = st.text_input(
"β Ask your question:",
key="qa_q",
placeholder="What would you like to know?"
)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("π Get Answer", key="qa_btn"):
if not context.strip() or not question.strip():
st.error("β οΈ Please provide both context and question")
else:
trunc_ctx, _ = truncate_text(context, 400)
with st.spinner("π€ Analyzing..."):
try:
qa_model = get_qa()
if qa_model:
result = qa_model(question=question, context=trunc_ctx)
answer = result['answer']
confidence = result.get('score', 0)
st.markdown(f"""
<div class="result-card">
<h4 style="color: #667eea; margin-bottom: 1rem;">π‘ AI Answer</h4>
<p style="font-size: 1.2rem; line-height: 1.8; color: #2d3748; font-weight: 500;">{answer}</p>
<div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;">
<span class="stats-badge" style="background: #48bb78; color: white;">
β Answer Found
</span>
<span class="stats-badge" style="background: #667eea; color: white;">
Confidence: {confidence:.1%}
</span>
</div>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"β Error finding answer: {str(e)}")
# ============================================
# TAB 3: QUIZ - FIXED
# ============================================
with tab3:
st.markdown("### π― AI Quiz Generator")
quiz_ctx = st.text_area(
"π Study material:",
value="",
height=200,
key="quiz_ctx",
placeholder="Paste content for quiz generation..."
)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("π Generate Quiz", key="quiz_btn"):
if not quiz_ctx.strip():
st.error("β οΈ Please provide text for quiz generation")
else:
trunc_quiz, _ = truncate_text(quiz_ctx, 200)
with st.spinner("π² Creating questions..."):
try:
sentences = sent_tokenize(trunc_quiz)[:5]
if len(sentences) == 0:
st.warning("β οΈ Could not extract sentences from the text")
else:
def get_first_words(text, max_words=12):
"""Get first N complete words from text"""
words = text.split()
if len(words) <= max_words:
return text
return ' '.join(words[:max_words])
questions = [f"What is the main concept in: '{get_first_words(s, 12)}'?" for s in sentences if len(s) > 10]
if questions:
st.markdown("<h4 style='color: white; text-shadow: 0 2px 4px rgba(0,0,0,0.3);'>π Generated Quiz Questions</h4>", unsafe_allow_html=True)
st.markdown('<div class="quiz-container">', unsafe_allow_html=True)
for i, q in enumerate(questions, 1):
st.markdown(f"""
<div class='quiz-question-card'>
<strong>Question {i}:</strong> <span style='color: white;'>{q}</span>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div></div>', unsafe_allow_html=True)
st.session_state["quiz"] = questions
else:
st.warning("β οΈ Could not generate questions from the provided text")
except Exception as e:
st.error(f"β Error generating quiz: {str(e)}")
# ============================================
# TAB 4: TRANSLATE
# ============================================
with tab4:
st.markdown("### π AI Translation")
trans_text = st.text_area(
"βοΈ Text to translate:",
height=200,
key="trans_txt",
placeholder="Enter text to translate..."
)
col1, col2 = st.columns(2)
with col1:
lang = st.selectbox(
"π― Target language:",
["French", "German", "Spanish", "Italian", "Hindi"]
)
with col2:
st.write("")
st.write("")
if st.button("π Translate Now", key="trans_btn"):
if not trans_text.strip():
st.error("β οΈ Please provide text to translate")
else:
model_map = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"German": "Helsinki-NLP/opus-mt-en-de",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Hindi": "Helsinki-NLP/opus-mt-en-hi"
}
trunc_trans, _ = truncate_text(trans_text, 200)
with st.spinner(f"π Translating to {lang}..."):
try:
translator = load_translator(model_map[lang])
if translator:
result = translator(trunc_trans, max_length=256)
translation = result[0]['translation_text']
st.markdown(f"""
<div class="result-card">
<h4 style="color: #667eea; margin-bottom: 1rem;">π Translation ({lang})</h4>
<p style="font-size: 1.2rem; line-height: 1.8; color: #2d3748;">{translation}</p>
<div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #e2e8f0;">
<span class="stats-badge" style="background: #48bb78; color: white;">
β Translated
</span>
</div>
</div>
""", unsafe_allow_html=True)
st.session_state["translation"] = translation
except Exception as e:
st.error(f"β Translation Error: {str(e)}")
# ============================================
# TAB 5: KEYWORDS - FIXED
# ============================================
with tab5:
st.markdown("### π AI Keyword Extraction")
keyword_input = st.text_area(
"π Text for analysis:",
value="",
height=200,
key="kw_txt",
placeholder="Paste text to extract key concepts..."
)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
if st.button("π Extract Keywords", key="kw_btn"):
if not keyword_input.strip():
st.error("β οΈ Please provide text for keyword extraction")
else:
trunc_kw, _ = truncate_text(keyword_input, 200)
with st.spinner("π Analyzing concepts..."):
try:
classifier = get_classifier()
if classifier:
labels = ["technology", "science", "education", "health", "business", "finance", "medical", "engineering", "mathematics", "history"]
result = classifier(trunc_kw, labels)
keywords = [lbl for lbl, score in zip(result['labels'], result['scores']) if score > 0.3][:5]
if keywords:
st.markdown('<div class="result-card">', unsafe_allow_html=True)
st.markdown("<h4 style='color: #667eea;'>π― Extracted Keywords</h4>", unsafe_allow_html=True)
st.markdown('<div class="keywords-container">', unsafe_allow_html=True)
kw_html = " ".join([
f"<span style='display: inline-block; background: linear-gradient(135deg, #667eea, #764ba2); color: white; padding: 12px 24px; border-radius: 25px; margin: 8px; font-size: 1rem; font-weight: 600; box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);'>{kw}</span>"
for kw in keywords
])
st.markdown(kw_html, unsafe_allow_html=True)
st.markdown('</div></div>', unsafe_allow_html=True)
st.session_state["keywords"] = keywords
else:
st.info("βΉοΈ No strong keywords found. Try providing more detailed text.")
except Exception as e:
st.error(f"β Error extracting keywords: {str(e)}")
# ============================================
# TAB 6: DOWNLOAD
# ============================================
with tab6:
st.markdown("### π₯ Download Results")
def download_link(text, filename, emoji):
"""Generate download link for text content"""
b64 = base64.b64encode(text.encode()).decode()
return f"""
<a href="data:file/txt;base64,{b64}" download="{filename}"
style="display: inline-block; background: linear-gradient(135deg, #667eea, #764ba2);
color: white; padding: 16px 32px; border-radius: 16px; text-decoration: none;
font-weight: 700; font-size: 1.1rem; margin: 10px; box-shadow: 0 8px 24px rgba(102, 126, 234, 0.3);
transition: all 0.3s ease;">
{emoji} Download {filename}
</a>
"""
col1, col2 = st.columns(2)
with col1:
if st.session_state["summary"]:
st.markdown(download_link(st.session_state["summary"], "summary.txt", "π"), unsafe_allow_html=True)
else:
st.info("π Generate a summary first")
if st.session_state["quiz"]:
quiz_text = "\n\n".join([f"Question {i}: {q}" for i, q in enumerate(st.session_state["quiz"], 1)])
st.markdown(download_link(quiz_text, "quiz.txt", "π―"), unsafe_allow_html=True)
else:
st.info("π― Generate a quiz first")
with col2:
if st.session_state["translation"]:
st.markdown(download_link(st.session_state["translation"], "translation.txt", "π"), unsafe_allow_html=True)
else:
st.info("π Translate text first")
if st.session_state["keywords"]:
keywords_text = "Extracted Keywords:\n\n" + "\n".join([f"- {kw}" for kw in st.session_state["keywords"]])
st.markdown(download_link(keywords_text, "keywords.txt", "π"), unsafe_allow_html=True)
else:
st.info("π Extract keywords first")
st.markdown("---")
if not any([st.session_state["summary"], st.session_state["quiz"],
st.session_state["translation"], st.session_state["keywords"]]):
st.warning("βΉοΈ Generate content in other tabs to enable downloads")
else:
st.success("β
Content ready for download! Click the buttons above.")
# ============================================
# PREMIUM FOOTER
# ============================================
st.markdown("""
<div class="premium-footer">
<p style="font-size: 1.2rem; font-weight: 600;">
Built with β€οΈ by
<span style="background: linear-gradient(135deg, #ffffff, #e0e7ff);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 700;">
Umaima Qureshi
</span>
</p>
<p style="font-size: 0.9rem;">Β© 2025 AI Study Helper Pro. All Rights Reserved.</p>
<p style="margin-top: 1rem;">
<a href="https://github.com/Umaima122" target="_blank"
style="color: white; text-decoration: none; padding: 8px 20px;
background: rgba(255, 255, 255, 0.15); border-radius: 20px;
backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.3);
transition: all 0.3s ease; margin: 0 5px;">
π GitHub
</a>
<a href="https://www.linkedin.com/in/umaima-qureshi" target="_blank"
style="color: white; text-decoration: none; padding: 8px 20px;
background: rgba(255, 255, 255, 0.15); border-radius: 20px;
backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.3);
transition: all 0.3s ease; margin: 0 5px;">
πΌ LinkedIn
</a>
</p>
<p style="font-size: 0.85rem; margin-top: 1rem; opacity: 0.8;">
Powered by Transformers β’ PyTorch β’ Streamlit β’ NLTK
</p>
</div>
""", unsafe_allow_html=True) |