Spaces:
Sleeping
Sleeping
Commit
·
35189e2
1
Parent(s):
aae42ec
upload code
Browse files- .gitignore +4 -0
- Dockerfile +16 -0
- LICENSE +407 -0
- MODEL_CARD.md +26 -0
- README.md +97 -4
- app.py +78 -0
- config/config.json +36 -0
- data/tox_smarts.json +0 -0
- predict.py +101 -0
- preprocess.py +68 -0
- requirements.txt +12 -0
- src/__init__.py +0 -0
- src/model.py +126 -0
- src/preprocess.py +670 -0
- src/utils.py +525 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
hiddens/
|
| 3 |
+
logs/
|
| 4 |
+
checkpoints_/
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.11
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
LICENSE
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Attribution-NonCommercial 4.0 International
|
| 2 |
+
|
| 3 |
+
=======================================================================
|
| 4 |
+
|
| 5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
| 6 |
+
does not provide legal services or legal advice. Distribution of
|
| 7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
| 8 |
+
other relationship. Creative Commons makes its licenses and related
|
| 9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
| 10 |
+
warranties regarding its licenses, any material licensed under their
|
| 11 |
+
terms and conditions, or any related information. Creative Commons
|
| 12 |
+
disclaims all liability for damages resulting from their use to the
|
| 13 |
+
fullest extent possible.
|
| 14 |
+
|
| 15 |
+
Using Creative Commons Public Licenses
|
| 16 |
+
|
| 17 |
+
Creative Commons public licenses provide a standard set of terms and
|
| 18 |
+
conditions that creators and other rights holders may use to share
|
| 19 |
+
original works of authorship and other material subject to copyright
|
| 20 |
+
and certain other rights specified in the public license below. The
|
| 21 |
+
following considerations are for informational purposes only, are not
|
| 22 |
+
exhaustive, and do not form part of our licenses.
|
| 23 |
+
|
| 24 |
+
Considerations for licensors: Our public licenses are
|
| 25 |
+
intended for use by those authorized to give the public
|
| 26 |
+
permission to use material in ways otherwise restricted by
|
| 27 |
+
copyright and certain other rights. Our licenses are
|
| 28 |
+
irrevocable. Licensors should read and understand the terms
|
| 29 |
+
and conditions of the license they choose before applying it.
|
| 30 |
+
Licensors should also secure all rights necessary before
|
| 31 |
+
applying our licenses so that the public can reuse the
|
| 32 |
+
material as expected. Licensors should clearly mark any
|
| 33 |
+
material not subject to the license. This includes other CC-
|
| 34 |
+
licensed material, or material used under an exception or
|
| 35 |
+
limitation to copyright. More considerations for licensors:
|
| 36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
| 37 |
+
|
| 38 |
+
Considerations for the public: By using one of our public
|
| 39 |
+
licenses, a licensor grants the public permission to use the
|
| 40 |
+
licensed material under specified terms and conditions. If
|
| 41 |
+
the licensor's permission is not necessary for any reason--for
|
| 42 |
+
example, because of any applicable exception or limitation to
|
| 43 |
+
copyright--then that use is not regulated by the license. Our
|
| 44 |
+
licenses grant only permissions under copyright and certain
|
| 45 |
+
other rights that a licensor has authority to grant. Use of
|
| 46 |
+
the licensed material may still be restricted for other
|
| 47 |
+
reasons, including because others have copyright or other
|
| 48 |
+
rights in the material. A licensor may make special requests,
|
| 49 |
+
such as asking that all changes be marked or described.
|
| 50 |
+
Although not required by our licenses, you are encouraged to
|
| 51 |
+
respect those requests where reasonable. More considerations
|
| 52 |
+
for the public:
|
| 53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
| 54 |
+
|
| 55 |
+
=======================================================================
|
| 56 |
+
|
| 57 |
+
Creative Commons Attribution-NonCommercial 4.0 International Public
|
| 58 |
+
License
|
| 59 |
+
|
| 60 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
| 61 |
+
to be bound by the terms and conditions of this Creative Commons
|
| 62 |
+
Attribution-NonCommercial 4.0 International Public License ("Public
|
| 63 |
+
License"). To the extent this Public License may be interpreted as a
|
| 64 |
+
contract, You are granted the Licensed Rights in consideration of Your
|
| 65 |
+
acceptance of these terms and conditions, and the Licensor grants You
|
| 66 |
+
such rights in consideration of benefits the Licensor receives from
|
| 67 |
+
making the Licensed Material available under these terms and
|
| 68 |
+
conditions.
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
Section 1 -- Definitions.
|
| 72 |
+
|
| 73 |
+
a. Adapted Material means material subject to Copyright and Similar
|
| 74 |
+
Rights that is derived from or based upon the Licensed Material
|
| 75 |
+
and in which the Licensed Material is translated, altered,
|
| 76 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
| 77 |
+
permission under the Copyright and Similar Rights held by the
|
| 78 |
+
Licensor. For purposes of this Public License, where the Licensed
|
| 79 |
+
Material is a musical work, performance, or sound recording,
|
| 80 |
+
Adapted Material is always produced where the Licensed Material is
|
| 81 |
+
synched in timed relation with a moving image.
|
| 82 |
+
|
| 83 |
+
b. Adapter's License means the license You apply to Your Copyright
|
| 84 |
+
and Similar Rights in Your contributions to Adapted Material in
|
| 85 |
+
accordance with the terms and conditions of this Public License.
|
| 86 |
+
|
| 87 |
+
c. Copyright and Similar Rights means copyright and/or similar rights
|
| 88 |
+
closely related to copyright including, without limitation,
|
| 89 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
| 90 |
+
Rights, without regard to how the rights are labeled or
|
| 91 |
+
categorized. For purposes of this Public License, the rights
|
| 92 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
| 93 |
+
Rights.
|
| 94 |
+
d. Effective Technological Measures means those measures that, in the
|
| 95 |
+
absence of proper authority, may not be circumvented under laws
|
| 96 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
| 97 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
| 98 |
+
agreements.
|
| 99 |
+
|
| 100 |
+
e. Exceptions and Limitations means fair use, fair dealing, and/or
|
| 101 |
+
any other exception or limitation to Copyright and Similar Rights
|
| 102 |
+
that applies to Your use of the Licensed Material.
|
| 103 |
+
|
| 104 |
+
f. Licensed Material means the artistic or literary work, database,
|
| 105 |
+
or other material to which the Licensor applied this Public
|
| 106 |
+
License.
|
| 107 |
+
|
| 108 |
+
g. Licensed Rights means the rights granted to You subject to the
|
| 109 |
+
terms and conditions of this Public License, which are limited to
|
| 110 |
+
all Copyright and Similar Rights that apply to Your use of the
|
| 111 |
+
Licensed Material and that the Licensor has authority to license.
|
| 112 |
+
|
| 113 |
+
h. Licensor means the individual(s) or entity(ies) granting rights
|
| 114 |
+
under this Public License.
|
| 115 |
+
|
| 116 |
+
i. NonCommercial means not primarily intended for or directed towards
|
| 117 |
+
commercial advantage or monetary compensation. For purposes of
|
| 118 |
+
this Public License, the exchange of the Licensed Material for
|
| 119 |
+
other material subject to Copyright and Similar Rights by digital
|
| 120 |
+
file-sharing or similar means is NonCommercial provided there is
|
| 121 |
+
no payment of monetary compensation in connection with the
|
| 122 |
+
exchange.
|
| 123 |
+
|
| 124 |
+
j. Share means to provide material to the public by any means or
|
| 125 |
+
process that requires permission under the Licensed Rights, such
|
| 126 |
+
as reproduction, public display, public performance, distribution,
|
| 127 |
+
dissemination, communication, or importation, and to make material
|
| 128 |
+
available to the public including in ways that members of the
|
| 129 |
+
public may access the material from a place and at a time
|
| 130 |
+
individually chosen by them.
|
| 131 |
+
|
| 132 |
+
k. Sui Generis Database Rights means rights other than copyright
|
| 133 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
| 134 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
| 135 |
+
as amended and/or succeeded, as well as other essentially
|
| 136 |
+
equivalent rights anywhere in the world.
|
| 137 |
+
|
| 138 |
+
l. You means the individual or entity exercising the Licensed Rights
|
| 139 |
+
under this Public License. Your has a corresponding meaning.
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
Section 2 -- Scope.
|
| 143 |
+
|
| 144 |
+
a. License grant.
|
| 145 |
+
|
| 146 |
+
1. Subject to the terms and conditions of this Public License,
|
| 147 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
| 148 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
| 149 |
+
exercise the Licensed Rights in the Licensed Material to:
|
| 150 |
+
|
| 151 |
+
a. reproduce and Share the Licensed Material, in whole or
|
| 152 |
+
in part, for NonCommercial purposes only; and
|
| 153 |
+
|
| 154 |
+
b. produce, reproduce, and Share Adapted Material for
|
| 155 |
+
NonCommercial purposes only.
|
| 156 |
+
|
| 157 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
| 158 |
+
Exceptions and Limitations apply to Your use, this Public
|
| 159 |
+
License does not apply, and You do not need to comply with
|
| 160 |
+
its terms and conditions.
|
| 161 |
+
|
| 162 |
+
3. Term. The term of this Public License is specified in Section
|
| 163 |
+
6(a).
|
| 164 |
+
|
| 165 |
+
4. Media and formats; technical modifications allowed. The
|
| 166 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
| 167 |
+
all media and formats whether now known or hereafter created,
|
| 168 |
+
and to make technical modifications necessary to do so. The
|
| 169 |
+
Licensor waives and/or agrees not to assert any right or
|
| 170 |
+
authority to forbid You from making technical modifications
|
| 171 |
+
necessary to exercise the Licensed Rights, including
|
| 172 |
+
technical modifications necessary to circumvent Effective
|
| 173 |
+
Technological Measures. For purposes of this Public License,
|
| 174 |
+
simply making modifications authorized by this Section 2(a)
|
| 175 |
+
(4) never produces Adapted Material.
|
| 176 |
+
|
| 177 |
+
5. Downstream recipients.
|
| 178 |
+
|
| 179 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
| 180 |
+
recipient of the Licensed Material automatically
|
| 181 |
+
receives an offer from the Licensor to exercise the
|
| 182 |
+
Licensed Rights under the terms and conditions of this
|
| 183 |
+
Public License.
|
| 184 |
+
|
| 185 |
+
b. No downstream restrictions. You may not offer or impose
|
| 186 |
+
any additional or different terms or conditions on, or
|
| 187 |
+
apply any Effective Technological Measures to, the
|
| 188 |
+
Licensed Material if doing so restricts exercise of the
|
| 189 |
+
Licensed Rights by any recipient of the Licensed
|
| 190 |
+
Material.
|
| 191 |
+
|
| 192 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
| 193 |
+
may be construed as permission to assert or imply that You
|
| 194 |
+
are, or that Your use of the Licensed Material is, connected
|
| 195 |
+
with, or sponsored, endorsed, or granted official status by,
|
| 196 |
+
the Licensor or others designated to receive attribution as
|
| 197 |
+
provided in Section 3(a)(1)(A)(i).
|
| 198 |
+
|
| 199 |
+
b. Other rights.
|
| 200 |
+
|
| 201 |
+
1. Moral rights, such as the right of integrity, are not
|
| 202 |
+
licensed under this Public License, nor are publicity,
|
| 203 |
+
privacy, and/or other similar personality rights; however, to
|
| 204 |
+
the extent possible, the Licensor waives and/or agrees not to
|
| 205 |
+
assert any such rights held by the Licensor to the limited
|
| 206 |
+
extent necessary to allow You to exercise the Licensed
|
| 207 |
+
Rights, but not otherwise.
|
| 208 |
+
|
| 209 |
+
2. Patent and trademark rights are not licensed under this
|
| 210 |
+
Public License.
|
| 211 |
+
|
| 212 |
+
3. To the extent possible, the Licensor waives any right to
|
| 213 |
+
collect royalties from You for the exercise of the Licensed
|
| 214 |
+
Rights, whether directly or through a collecting society
|
| 215 |
+
under any voluntary or waivable statutory or compulsory
|
| 216 |
+
licensing scheme. In all other cases the Licensor expressly
|
| 217 |
+
reserves any right to collect such royalties, including when
|
| 218 |
+
the Licensed Material is used other than for NonCommercial
|
| 219 |
+
purposes.
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
Section 3 -- License Conditions.
|
| 223 |
+
|
| 224 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
| 225 |
+
following conditions.
|
| 226 |
+
|
| 227 |
+
a. Attribution.
|
| 228 |
+
|
| 229 |
+
1. If You Share the Licensed Material (including in modified
|
| 230 |
+
form), You must:
|
| 231 |
+
|
| 232 |
+
a. retain the following if it is supplied by the Licensor
|
| 233 |
+
with the Licensed Material:
|
| 234 |
+
|
| 235 |
+
i. identification of the creator(s) of the Licensed
|
| 236 |
+
Material and any others designated to receive
|
| 237 |
+
attribution, in any reasonable manner requested by
|
| 238 |
+
the Licensor (including by pseudonym if
|
| 239 |
+
designated);
|
| 240 |
+
|
| 241 |
+
ii. a copyright notice;
|
| 242 |
+
|
| 243 |
+
iii. a notice that refers to this Public License;
|
| 244 |
+
|
| 245 |
+
iv. a notice that refers to the disclaimer of
|
| 246 |
+
warranties;
|
| 247 |
+
|
| 248 |
+
v. a URI or hyperlink to the Licensed Material to the
|
| 249 |
+
extent reasonably practicable;
|
| 250 |
+
|
| 251 |
+
b. indicate if You modified the Licensed Material and
|
| 252 |
+
retain an indication of any previous modifications; and
|
| 253 |
+
|
| 254 |
+
c. indicate the Licensed Material is licensed under this
|
| 255 |
+
Public License, and include the text of, or the URI or
|
| 256 |
+
hyperlink to, this Public License.
|
| 257 |
+
|
| 258 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
| 259 |
+
reasonable manner based on the medium, means, and context in
|
| 260 |
+
which You Share the Licensed Material. For example, it may be
|
| 261 |
+
reasonable to satisfy the conditions by providing a URI or
|
| 262 |
+
hyperlink to a resource that includes the required
|
| 263 |
+
information.
|
| 264 |
+
|
| 265 |
+
3. If requested by the Licensor, You must remove any of the
|
| 266 |
+
information required by Section 3(a)(1)(A) to the extent
|
| 267 |
+
reasonably practicable.
|
| 268 |
+
|
| 269 |
+
4. If You Share Adapted Material You produce, the Adapter's
|
| 270 |
+
License You apply must not prevent recipients of the Adapted
|
| 271 |
+
Material from complying with this Public License.
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
Section 4 -- Sui Generis Database Rights.
|
| 275 |
+
|
| 276 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
| 277 |
+
apply to Your use of the Licensed Material:
|
| 278 |
+
|
| 279 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
| 280 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
| 281 |
+
portion of the contents of the database for NonCommercial purposes
|
| 282 |
+
only;
|
| 283 |
+
|
| 284 |
+
b. if You include all or a substantial portion of the database
|
| 285 |
+
contents in a database in which You have Sui Generis Database
|
| 286 |
+
Rights, then the database in which You have Sui Generis Database
|
| 287 |
+
Rights (but not its individual contents) is Adapted Material; and
|
| 288 |
+
|
| 289 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
| 290 |
+
all or a substantial portion of the contents of the database.
|
| 291 |
+
|
| 292 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
| 293 |
+
replace Your obligations under this Public License where the Licensed
|
| 294 |
+
Rights include other Copyright and Similar Rights.
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
| 298 |
+
|
| 299 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
| 300 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
| 301 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
| 302 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
| 303 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
| 304 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
| 305 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
| 306 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
| 307 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
| 308 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
| 309 |
+
|
| 310 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
| 311 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
| 312 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
| 313 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
| 314 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
| 315 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
| 316 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
| 317 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
| 318 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
| 319 |
+
|
| 320 |
+
c. The disclaimer of warranties and limitation of liability provided
|
| 321 |
+
above shall be interpreted in a manner that, to the extent
|
| 322 |
+
possible, most closely approximates an absolute disclaimer and
|
| 323 |
+
waiver of all liability.
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
Section 6 -- Term and Termination.
|
| 327 |
+
|
| 328 |
+
a. This Public License applies for the term of the Copyright and
|
| 329 |
+
Similar Rights licensed here. However, if You fail to comply with
|
| 330 |
+
this Public License, then Your rights under this Public License
|
| 331 |
+
terminate automatically.
|
| 332 |
+
|
| 333 |
+
b. Where Your right to use the Licensed Material has terminated under
|
| 334 |
+
Section 6(a), it reinstates:
|
| 335 |
+
|
| 336 |
+
1. automatically as of the date the violation is cured, provided
|
| 337 |
+
it is cured within 30 days of Your discovery of the
|
| 338 |
+
violation; or
|
| 339 |
+
|
| 340 |
+
2. upon express reinstatement by the Licensor.
|
| 341 |
+
|
| 342 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
| 343 |
+
right the Licensor may have to seek remedies for Your violations
|
| 344 |
+
of this Public License.
|
| 345 |
+
|
| 346 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
| 347 |
+
Licensed Material under separate terms or conditions or stop
|
| 348 |
+
distributing the Licensed Material at any time; however, doing so
|
| 349 |
+
will not terminate this Public License.
|
| 350 |
+
|
| 351 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
| 352 |
+
License.
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
Section 7 -- Other Terms and Conditions.
|
| 356 |
+
|
| 357 |
+
a. The Licensor shall not be bound by any additional or different
|
| 358 |
+
terms or conditions communicated by You unless expressly agreed.
|
| 359 |
+
|
| 360 |
+
b. Any arrangements, understandings, or agreements regarding the
|
| 361 |
+
Licensed Material not stated herein are separate from and
|
| 362 |
+
independent of the terms and conditions of this Public License.
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
Section 8 -- Interpretation.
|
| 366 |
+
|
| 367 |
+
a. For the avoidance of doubt, this Public License does not, and
|
| 368 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
| 369 |
+
conditions on any use of the Licensed Material that could lawfully
|
| 370 |
+
be made without permission under this Public License.
|
| 371 |
+
|
| 372 |
+
b. To the extent possible, if any provision of this Public License is
|
| 373 |
+
deemed unenforceable, it shall be automatically reformed to the
|
| 374 |
+
minimum extent necessary to make it enforceable. If the provision
|
| 375 |
+
cannot be reformed, it shall be severed from this Public License
|
| 376 |
+
without affecting the enforceability of the remaining terms and
|
| 377 |
+
conditions.
|
| 378 |
+
|
| 379 |
+
c. No term or condition of this Public License will be waived and no
|
| 380 |
+
failure to comply consented to unless expressly agreed to by the
|
| 381 |
+
Licensor.
|
| 382 |
+
|
| 383 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
| 384 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
| 385 |
+
that apply to the Licensor or You, including from the legal
|
| 386 |
+
processes of any jurisdiction or authority.
|
| 387 |
+
|
| 388 |
+
=======================================================================
|
| 389 |
+
|
| 390 |
+
Creative Commons is not a party to its public
|
| 391 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
| 392 |
+
its public licenses to material it publishes and in those instances
|
| 393 |
+
will be considered the “Licensor.” The text of the Creative Commons
|
| 394 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
| 395 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
| 396 |
+
material is shared under a Creative Commons public license or as
|
| 397 |
+
otherwise permitted by the Creative Commons policies published at
|
| 398 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
| 399 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
| 400 |
+
of Creative Commons without its prior written consent including,
|
| 401 |
+
without limitation, in connection with any unauthorized modifications
|
| 402 |
+
to any of its public licenses or any other arrangements,
|
| 403 |
+
understandings, or agreements concerning use of licensed material. For
|
| 404 |
+
the avoidance of doubt, this paragraph does not form part of the
|
| 405 |
+
public licenses.
|
| 406 |
+
|
| 407 |
+
Creative Commons may be contacted at creativecommons.org.
|
MODEL_CARD.md
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Model card - tox21_snn_classifier
|
| 2 |
+
### Model details
|
| 3 |
+
- Model name: Self-Normalizing Neural Network Tox21 Baseline
|
| 4 |
+
- Developer: JKU (Linz)
|
| 5 |
+
- Paper URL: https://proceedings.neurips.cc/paper_files/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
|
| 6 |
+
- Model type / architecture:
|
| 7 |
+
- Self-Normalizing Neural Network implemented using PyTorch.
|
| 8 |
+
- Hyperparameters: https://huggingface.co/spaces/ml-jku/tox21_snn_classifier/blob/main/config/config.json
|
| 9 |
+
- A multitask network is trained for all Tox21 targets.
|
| 10 |
+
- Inference: Access via FastAPI endpoint. Upon receiving a Tox21 prediction request, the model generates and returns predictions for all Tox21 targets simultaneously.
|
| 11 |
+
- Model version: v0
|
| 12 |
+
- Model date: 14.10.2025
|
| 13 |
+
- Reproducibility: Code for full training is available and enables retraining from
|
| 14 |
+
scratch.
|
| 15 |
+
|
| 16 |
+
### Intended use
|
| 17 |
+
This model serves as a baseline benchmark for evaluating and comparing toxicity prediction methods across the 12 pathway assays of the Tox21 dataset. It is not intended for clinical decision-making without experimental validation.
|
| 18 |
+
|
| 19 |
+
### Metric
|
| 20 |
+
Each Tox21 task is evaluated using the area under the receiver operating characteristic curve (AUC). Overall performance is reported as the mean AUC across all individual tasks.
|
| 21 |
+
|
| 22 |
+
### Training data
|
| 23 |
+
Tox21 training and validation sets.
|
| 24 |
+
|
| 25 |
+
### Evaluation data
|
| 26 |
+
Tox21 test set.
|
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title: Tox21
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
|
@@ -9,4 +9,97 @@ license: cc-by-nc-4.0
|
|
| 9 |
short_description: Self-Normalizing Neural Network Baseline for Tox21
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Tox21 SNN Classifier
|
| 3 |
+
emoji: 🌖
|
| 4 |
+
colorFrom: green
|
| 5 |
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
|
|
|
| 9 |
short_description: Self-Normalizing Neural Network Baseline for Tox21
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Tox21 SNN Classifier
|
| 13 |
+
|
| 14 |
+
This repository hosts a Hugging Face Space that provides an API for submitting models to the [Tox21 Leaderboard](https://huggingface.co/spaces/ml-jku/tox21_leaderboard).
|
| 15 |
+
|
| 16 |
+
Here a [self-normalizing network (SNN)](https://arxiv.org/abs/1706.02515) is trained on the Tox21 dataset, and the trained models are provided for
|
| 17 |
+
inference. Model input is a SMILES string of the small molecule, and the output are 12 numeric values for
|
| 18 |
+
each of the toxic effects of the Tox21 dataset.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
**Important:** For leaderboard submission, your Space needs to include training code. The file `train.py` should train the model using the config specified inside the `config/` folder and save the final model parameters into a file inside the `checkpoints/` folder. The model should be trained using the [Tox21_dataset](https://huggingface.co/datasets/tschouis/tox21) provided on Hugging Face. The datasets can be loaded like this:
|
| 22 |
+
```python
|
| 23 |
+
from datasets import load_dataset
|
| 24 |
+
ds = load_dataset("ml-jku/tox21", token=token)
|
| 25 |
+
train_df = ds["train"].to_pandas()
|
| 26 |
+
val_df = ds["validation"].to_pandas()
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
Additionally, the Space needs to implement inference in the `predict()` function inside `predict.py`. The `predict()` function must keep the provided skeleton: it should take a list of SMILES strings as input and return a nested prediction dictionary as output, with SMILES as keys and dictionaries containing targetname-prediction pairs as values. Therefore, any preprocessing of SMILES strings must be executed on-the-fly during inference.
|
| 30 |
+
|
| 31 |
+
# Repository Structure
|
| 32 |
+
- `predict.py` - Defines the `predict()` function required by the leaderboard (entry point for inference).
|
| 33 |
+
- `app.py` - FastAPI application wrapper (can be used as-is).
|
| 34 |
+
- `preprocess.py` - preprocesses SMILES strings to generate feature descriptors and saves results as NPZ files in `data/`.
|
| 35 |
+
- `train.py` - trains and saves a model using the config in the `config/` folder.
|
| 36 |
+
- `config/` - the config file used by `train.py`.
|
| 37 |
+
- `logs/` - all the logs of `train.py`, the saved model, and predictions on the validation set.
|
| 38 |
+
- `data/` - SNN uses numerical data. During preprocessing in `preprocess.py` two NPZ files containing molecule features are created and saved here.
|
| 39 |
+
- `checkpoints/` - the saved model that is used in `predict.py` is here.
|
| 40 |
+
|
| 41 |
+
- `src/` - Core model & preprocessing logic:
|
| 42 |
+
- `preprocess.py` - SMILES preprocessing logic
|
| 43 |
+
- `model.py` - SNN model class with processing, saving and loading logic
|
| 44 |
+
- `utils.py` - utility functions
|
| 45 |
+
|
| 46 |
+
# Quickstart with Spaces
|
| 47 |
+
|
| 48 |
+
You can easily adapt this project in your own Hugging Face account:
|
| 49 |
+
|
| 50 |
+
- Open this Space on Hugging Face.
|
| 51 |
+
|
| 52 |
+
- Click "Duplicate this Space" (top-right corner).
|
| 53 |
+
|
| 54 |
+
- Modify `src/` for your preprocessing pipeline and model class
|
| 55 |
+
|
| 56 |
+
- Modify `predict()` inside `predict.py` to perform model inference while keeping the function skeleton unchanged to remain compatible with the leaderboard.
|
| 57 |
+
|
| 58 |
+
- Modify `train.py` and/or `preprocess.py` according to your model and preprocessing pipeline.
|
| 59 |
+
|
| 60 |
+
- Modify the file inside `config/` to contain all hyperparameters that are set in `train.py`.
|
| 61 |
+
|
| 62 |
+
That’s it, your model will be available as an API endpoint for the Tox21 Leaderboard.
|
| 63 |
+
|
| 64 |
+
# Installation
|
| 65 |
+
To run (and train) the SNN, clone the repository and install dependencies:
|
| 66 |
+
|
| 67 |
+
```bash
|
| 68 |
+
git clone https://huggingface.co/spaces/ml-jku/tox21_snn_classifier
|
| 69 |
+
cd tox21_snn_classifier
|
| 70 |
+
|
| 71 |
+
conda create -n tox21_snn_cls python=3.11
|
| 72 |
+
conda activate tox21_snn_cls
|
| 73 |
+
pip install -r requirements.txt
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
# Inference
|
| 77 |
+
|
| 78 |
+
For inference, you only need `predict.py`.
|
| 79 |
+
|
| 80 |
+
Example usage inside Python:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from predict import predict
|
| 84 |
+
|
| 85 |
+
smiles_list = ["CCO", "c1ccccc1", "CC(=O)O"]
|
| 86 |
+
results = predict(smiles_list)
|
| 87 |
+
|
| 88 |
+
print(results)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
The output will be a nested dictionary in the format:
|
| 92 |
+
|
| 93 |
+
```python
|
| 94 |
+
{
|
| 95 |
+
"CCO": {"target1": 0, "target2": 1, ..., "target12": 0},
|
| 96 |
+
"c1ccccc1": {"target1": 1, "target2": 0, ..., "target12": 1},
|
| 97 |
+
"CC(=O)O": {"target1": 0, "target2": 0, ..., "target12": 0}
|
| 98 |
+
}
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
# Notes
|
| 102 |
+
|
| 103 |
+
- Adapting `predict.py`, `train.py`, `config/`, and `checkpoints/` is required for leaderboard submission.
|
| 104 |
+
|
| 105 |
+
- Preprocessing must be done inside `predict.py` not just `train.py`.
|
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This is the main entry point for the FastAPI application.
|
| 3 |
+
The app handles the request to predict toxicity for a list of SMILES strings.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
# ---------------------------------------------------------------------------------------
|
| 7 |
+
# Dependencies and global variable definition
|
| 8 |
+
import os
|
| 9 |
+
from typing import List, Dict, Optional
|
| 10 |
+
from fastapi import FastAPI, Header, HTTPException
|
| 11 |
+
from pydantic import BaseModel, Field
|
| 12 |
+
|
| 13 |
+
from predict import predict as predict_func
|
| 14 |
+
|
| 15 |
+
API_KEY = os.getenv("API_KEY") # set via Space Secrets
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# ---------------------------------------------------------------------------------------
|
| 19 |
+
class Request(BaseModel):
|
| 20 |
+
smiles: List[str] = Field(min_items=1, max_items=1000)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class Response(BaseModel):
|
| 24 |
+
predictions: dict
|
| 25 |
+
model_info: Dict[str, str] = {}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
app = FastAPI(title="toxicity-api")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@app.get("/")
|
| 32 |
+
def root():
|
| 33 |
+
return {
|
| 34 |
+
"message": "Toxicity Prediction API",
|
| 35 |
+
"endpoints": {
|
| 36 |
+
"/metadata": "GET - API metadata and capabilities",
|
| 37 |
+
"/healthz": "GET - Health check",
|
| 38 |
+
"/predict": "POST - Predict toxicity for SMILES",
|
| 39 |
+
},
|
| 40 |
+
"usage": "Send POST to /predict with {'smiles': ['your_smiles_here']} and Authorization header",
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@app.get("/metadata")
|
| 45 |
+
def metadata():
|
| 46 |
+
return {
|
| 47 |
+
"name": "SNN",
|
| 48 |
+
"version": "1.0.0",
|
| 49 |
+
"max_batch_size": 256,
|
| 50 |
+
"tox_endpoints": [
|
| 51 |
+
"NR-AR",
|
| 52 |
+
"NR-AR-LBD",
|
| 53 |
+
"NR-AhR",
|
| 54 |
+
"NR-Aromatase",
|
| 55 |
+
"NR-ER",
|
| 56 |
+
"NR-ER-LBD",
|
| 57 |
+
"NR-PPAR-gamma",
|
| 58 |
+
"SR-ARE",
|
| 59 |
+
"SR-ATAD5",
|
| 60 |
+
"SR-HSE",
|
| 61 |
+
"SR-MMP",
|
| 62 |
+
"SR-p53",
|
| 63 |
+
],
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@app.get("/healthz")
|
| 68 |
+
def healthz():
|
| 69 |
+
return {"ok": True}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@app.post("/predict", response_model=Response)
|
| 73 |
+
def predict(request: Request):
|
| 74 |
+
predictions = predict_func(request.smiles)
|
| 75 |
+
return {
|
| 76 |
+
"predictions": predictions,
|
| 77 |
+
"model_info": {"name": "SNN", "version": "1.0.0"},
|
| 78 |
+
}
|
config/config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"seed": 0,
|
| 3 |
+
"debug": "false",
|
| 4 |
+
"device": "cpu",
|
| 5 |
+
|
| 6 |
+
"log_folder": "logs/",
|
| 7 |
+
|
| 8 |
+
"data_folder": "data/",
|
| 9 |
+
"cvfold": 4,
|
| 10 |
+
"ecfp" : {
|
| 11 |
+
"radius": 3,
|
| 12 |
+
"fpsize": 8192
|
| 13 |
+
},
|
| 14 |
+
"merge_train_val": "false",
|
| 15 |
+
"descriptors": ["ecfps", "rdkit_descrs", "maccs", "tox"],
|
| 16 |
+
"feature_selection": {
|
| 17 |
+
"use": "true",
|
| 18 |
+
"min_var": 0.05,
|
| 19 |
+
"max_corr": 1,
|
| 20 |
+
"max_features": -1,
|
| 21 |
+
"min_var__feature_keys": ["ecfps", "tox"],
|
| 22 |
+
"max_corr__feature_keys": ["ecfps", "tox"],
|
| 23 |
+
"min_var__independent_keys": "true",
|
| 24 |
+
"max_corr__independent_keys": "true"
|
| 25 |
+
},
|
| 26 |
+
"feature_quantilization": {
|
| 27 |
+
"use": "true",
|
| 28 |
+
"feature_keys": ["rdkit_descrs"]
|
| 29 |
+
},
|
| 30 |
+
"max_samples": -1,
|
| 31 |
+
"scaler": "squash",
|
| 32 |
+
"preprocessor_path": "checkpoints/preprocessor.joblib",
|
| 33 |
+
|
| 34 |
+
"ckpt_path": "checkpoints/snn_ckpt.pth",
|
| 35 |
+
"model_config": "none"
|
| 36 |
+
}
|
data/tox_smarts.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
predict.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This files includes a predict function for the Tox21.
|
| 3 |
+
As an input it takes a list of SMILES and it outputs a nested dictionary with
|
| 4 |
+
SMILES and target names as keys.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
# ---------------------------------------------------------------------------------------
|
| 8 |
+
# Dependencies
|
| 9 |
+
from collections import defaultdict
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
import json
|
| 14 |
+
import joblib
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from src.model import Tox21SNNClassifier, SNNConfig
|
| 18 |
+
from src.preprocess import create_descriptors, FeaturePreprocessor
|
| 19 |
+
from src.utils import TASKS, normalize_config
|
| 20 |
+
|
| 21 |
+
# ---------------------------------------------------------------------------------------
|
| 22 |
+
CONFIG_FILE = "./config/config.json"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def predict(
|
| 26 |
+
smiles_list: list[str], default_prediction=0.5
|
| 27 |
+
) -> dict[str, dict[str, float]]:
|
| 28 |
+
"""Applies the classifier to a list of SMILES strings. Returns prediction=0.0 for
|
| 29 |
+
any molecule that could not be cleaned.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
smiles_list (list[str]): list of SMILES strings
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
dict: nested prediction dictionary, following {'<smiles>': {'<target>': <pred>}}
|
| 36 |
+
"""
|
| 37 |
+
print(f"Received {len(smiles_list)} SMILES strings")
|
| 38 |
+
# preprocessing pipeline
|
| 39 |
+
with open(CONFIG_FILE, "r") as f:
|
| 40 |
+
config = json.load(f)
|
| 41 |
+
config = normalize_config(config)
|
| 42 |
+
|
| 43 |
+
features, is_clean = create_descriptors(
|
| 44 |
+
smiles_list, config["descriptors"], **config["ecfp"]
|
| 45 |
+
)
|
| 46 |
+
print(f"Created descriptors for {sum(is_clean)} molecules.")
|
| 47 |
+
print(f"{len(is_clean) - sum(is_clean)} molecules removed during cleaning")
|
| 48 |
+
|
| 49 |
+
# setup model
|
| 50 |
+
preprocessor = FeaturePreprocessor(
|
| 51 |
+
feature_selection_config=config["feature_selection"],
|
| 52 |
+
feature_quantilization_config=config["feature_quantilization"],
|
| 53 |
+
descriptors=config["descriptors"],
|
| 54 |
+
max_samples=config["max_samples"],
|
| 55 |
+
scaler=config["scaler"],
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
preprocessor_ckpt = joblib.load(config["preprocessor_path"])
|
| 59 |
+
preprocessor.set_state(preprocessor_ckpt["preprocessor"])
|
| 60 |
+
print(f"Loaded preprocessor from {config['preprocessor_path']}")
|
| 61 |
+
|
| 62 |
+
features = {descr: array[is_clean] for descr, array in features.items()}
|
| 63 |
+
features = preprocessor.transform(features)
|
| 64 |
+
|
| 65 |
+
dataset = torch.utils.data.TensorDataset(torch.FloatTensor(features))
|
| 66 |
+
loader = torch.utils.data.DataLoader(
|
| 67 |
+
dataset, batch_size=256, shuffle=False, num_workers=0
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# setup model
|
| 71 |
+
cfg = SNNConfig(
|
| 72 |
+
hidden_dim=512,
|
| 73 |
+
n_layers=8,
|
| 74 |
+
dropout=0.05,
|
| 75 |
+
layer_form="rect",
|
| 76 |
+
in_features=features.shape[1],
|
| 77 |
+
out_features=12,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
model = Tox21SNNClassifier(cfg)
|
| 81 |
+
model.load_model(config["ckpt_path"])
|
| 82 |
+
model.eval()
|
| 83 |
+
print(f"Loaded model from {config['ckpt_path']}")
|
| 84 |
+
|
| 85 |
+
predictions = defaultdict(dict)
|
| 86 |
+
|
| 87 |
+
print(f"Create predictions:")
|
| 88 |
+
preds = []
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
preds = np.concatenate([model.predict(batch[0]) for batch in loader], axis=0)
|
| 91 |
+
|
| 92 |
+
for i, target in enumerate(model.tasks):
|
| 93 |
+
target_preds = np.empty_like(is_clean, dtype=float)
|
| 94 |
+
|
| 95 |
+
target_preds[~is_clean] = default_prediction
|
| 96 |
+
target_preds[is_clean] = preds[:, i]
|
| 97 |
+
|
| 98 |
+
for smiles, pred in zip(smiles_list, target_preds):
|
| 99 |
+
predictions[smiles][target] = float(pred)
|
| 100 |
+
|
| 101 |
+
return predictions
|
preprocess.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This files includes a the data processing for Tox21.
|
| 3 |
+
As an input it takes a list of SMILES and it outputs a nested dictionary with
|
| 4 |
+
SMILES and target names as keys.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import argparse
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
from src.preprocess import create_descriptors, get_tox21_split
|
| 14 |
+
from src.utils import TASKS, HF_TOKEN, create_dir, normalize_config
|
| 15 |
+
|
| 16 |
+
parser = argparse.ArgumentParser(
|
| 17 |
+
description="Data preprocessing script for the Tox21 dataset"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
parser.add_argument(
|
| 21 |
+
"--config",
|
| 22 |
+
type=str,
|
| 23 |
+
default="config/config.json",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def main(config):
|
| 28 |
+
"""Create molecule descriptors for HF Tox21 dataset"""
|
| 29 |
+
ds = get_tox21_split(HF_TOKEN, cvfold=config["cvfold"])
|
| 30 |
+
|
| 31 |
+
splits = ["train", "validation"]
|
| 32 |
+
for split in splits:
|
| 33 |
+
|
| 34 |
+
print(f"Preprocess {split} molecules")
|
| 35 |
+
|
| 36 |
+
ds_split = ds[split]
|
| 37 |
+
smiles = list(ds_split["smiles"])
|
| 38 |
+
|
| 39 |
+
features, clean_mol_mask = create_descriptors(
|
| 40 |
+
smiles, config["descriptors"], **config["ecfp"]
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
labels = []
|
| 44 |
+
for task in TASKS:
|
| 45 |
+
labels.append(ds_split[task].to_numpy())
|
| 46 |
+
labels = np.stack(labels, axis=1)
|
| 47 |
+
|
| 48 |
+
save_path = os.path.join(config["data_folder"], f"tox21_{split}_cv4.npz")
|
| 49 |
+
with open(save_path, "wb") as f:
|
| 50 |
+
np.savez(
|
| 51 |
+
f,
|
| 52 |
+
clean_mol_mask=clean_mol_mask,
|
| 53 |
+
labels=labels,
|
| 54 |
+
**features,
|
| 55 |
+
)
|
| 56 |
+
print(f"Saved preprocessed {split} split under {save_path}")
|
| 57 |
+
print("Preprocessing finished successfully")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
args = parser.parse_args()
|
| 62 |
+
|
| 63 |
+
with open(args.config, "r") as f:
|
| 64 |
+
config = json.load(f)
|
| 65 |
+
config = normalize_config(config)
|
| 66 |
+
|
| 67 |
+
create_dir(config["data_folder"])
|
| 68 |
+
main(config)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
statsmodels==0.14.5
|
| 4 |
+
rdkit==2025.03.5
|
| 5 |
+
numpy==2.2.6
|
| 6 |
+
scikit-learn==1.6.1
|
| 7 |
+
joblib
|
| 8 |
+
tabulate
|
| 9 |
+
datasets==4.0.0
|
| 10 |
+
scipy==1.16.1
|
| 11 |
+
pandas==2.3.2
|
| 12 |
+
torch==2.8.0
|
src/__init__.py
ADDED
|
File without changes
|
src/model.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This files includes a XGBoost model for Tox21.
|
| 3 |
+
As an input it takes a list of SMILES and it outputs a nested dictionary with
|
| 4 |
+
SMILES and target names as keys.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
# ---------------------------------------------------------------------------------------
|
| 8 |
+
# Dependencies
|
| 9 |
+
from typing import Literal
|
| 10 |
+
|
| 11 |
+
from dataclasses import dataclass
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
|
| 18 |
+
from .utils import TASKS
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# ---------------------------------------------------------------------------------------
|
| 22 |
+
@dataclass
|
| 23 |
+
class SNNConfig:
|
| 24 |
+
hidden_dim: int
|
| 25 |
+
n_layers: int
|
| 26 |
+
dropout: float
|
| 27 |
+
layer_form: Literal["conic", "rect"]
|
| 28 |
+
in_features: int
|
| 29 |
+
out_features: int
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Tox21SNNClassifier(nn.Module):
|
| 33 |
+
"""An SNN classifier that assigns a toxicity score to a given SMILES string."""
|
| 34 |
+
|
| 35 |
+
def __init__(self, config: SNNConfig):
|
| 36 |
+
"""Initialize an SNN classifier for each of the 12 Tox21 tasks.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
seed (int, optional): seed for SNN to ensure reproducibility. Defaults to 42.
|
| 40 |
+
"""
|
| 41 |
+
super(Tox21SNNClassifier, self).__init__()
|
| 42 |
+
|
| 43 |
+
self.tasks = TASKS
|
| 44 |
+
self.num_tasks = len(TASKS)
|
| 45 |
+
|
| 46 |
+
activation = nn.SELU()
|
| 47 |
+
dropout = nn.AlphaDropout(p=config.dropout)
|
| 48 |
+
|
| 49 |
+
n_hidden = (
|
| 50 |
+
(
|
| 51 |
+
config.hidden_dim
|
| 52 |
+
* np.power(
|
| 53 |
+
np.power(
|
| 54 |
+
config.out_features / config.hidden_dim, 1 / (config.n_layers)
|
| 55 |
+
),
|
| 56 |
+
range(-1, config.n_layers),
|
| 57 |
+
)
|
| 58 |
+
).astype(int)
|
| 59 |
+
if config.layer_form == "conic"
|
| 60 |
+
else [config.hidden_dim] * (config.n_layers + 1)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
n_hidden[0] = config.in_features
|
| 64 |
+
n_hidden[config.n_layers] = config.out_features
|
| 65 |
+
|
| 66 |
+
layers = []
|
| 67 |
+
for l in range(config.n_layers + 1):
|
| 68 |
+
fc = nn.Linear(
|
| 69 |
+
in_features=n_hidden[l],
|
| 70 |
+
out_features=(
|
| 71 |
+
n_hidden[config.n_layers]
|
| 72 |
+
if l == config.n_layers
|
| 73 |
+
else n_hidden[l + 1]
|
| 74 |
+
),
|
| 75 |
+
)
|
| 76 |
+
if l < config.n_layers:
|
| 77 |
+
block = [
|
| 78 |
+
fc,
|
| 79 |
+
activation,
|
| 80 |
+
dropout,
|
| 81 |
+
]
|
| 82 |
+
else: # last layer
|
| 83 |
+
block = [fc]
|
| 84 |
+
layers.extend(block)
|
| 85 |
+
|
| 86 |
+
self.model = nn.Sequential(*layers)
|
| 87 |
+
self.config = config
|
| 88 |
+
|
| 89 |
+
self.reset_parameters()
|
| 90 |
+
|
| 91 |
+
def reset_parameters(self):
|
| 92 |
+
for param in self.model.parameters():
|
| 93 |
+
# biases zero
|
| 94 |
+
if len(param.shape) == 1:
|
| 95 |
+
nn.init.constant_(param, 0)
|
| 96 |
+
# others using lecun-normal initialization
|
| 97 |
+
else:
|
| 98 |
+
nn.init.kaiming_normal_(param, mode="fan_in", nonlinearity="linear")
|
| 99 |
+
|
| 100 |
+
def forward(self, x) -> torch.Tensor:
|
| 101 |
+
x = self.model(x)
|
| 102 |
+
return x # x.view(x.size(0), self.num_tasks)
|
| 103 |
+
|
| 104 |
+
def load_model(self, path: str):
|
| 105 |
+
state_dict = torch.load(
|
| 106 |
+
path, weights_only=False, map_location=torch.device("cpu")
|
| 107 |
+
)["model"]
|
| 108 |
+
self.load_state_dict(state_dict)
|
| 109 |
+
self.eval()
|
| 110 |
+
|
| 111 |
+
@torch.no_grad()
|
| 112 |
+
def predict(self, features: torch.tensor) -> np.ndarray:
|
| 113 |
+
"""Predicts labels for a given Tox21 target using molecule features
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
task (str): the Tox21 target to predict for
|
| 117 |
+
features (torch.tensor): molecule features used for prediction
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
np.ndarray: predicted probability for positive class
|
| 121 |
+
"""
|
| 122 |
+
assert (
|
| 123 |
+
len(features.shape) == 2
|
| 124 |
+
), f"Function expects 2D torch.tensor. Current shape: {features.shape}"
|
| 125 |
+
|
| 126 |
+
return torch.nn.functional.sigmoid(self.model(features)).detach().cpu().numpy()
|
src/preprocess.py
ADDED
|
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import json
|
| 3 |
+
from typing import Any
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
| 10 |
+
from sklearn.feature_selection import VarianceThreshold
|
| 11 |
+
from sklearn.preprocessing import StandardScaler, FunctionTransformer
|
| 12 |
+
from statsmodels.distributions.empirical_distribution import ECDF
|
| 13 |
+
|
| 14 |
+
from rdkit import Chem, DataStructs
|
| 15 |
+
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
|
| 16 |
+
from rdkit.Chem.rdchem import Mol
|
| 17 |
+
|
| 18 |
+
from .utils import USED_200_DESCR, TOX_SMARTS_PATH, Standardizer, FeatureDictMixin
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class SquashScaler(TransformerMixin, BaseEstimator):
|
| 22 |
+
"""
|
| 23 |
+
Scaler that performs sequential standardization, nonlinearity (tanh), and
|
| 24 |
+
re-standardization. Inspired by DeepTox (Mayr et al., 2016)
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self):
|
| 28 |
+
self.scaler1 = StandardScaler()
|
| 29 |
+
self.scaler2 = StandardScaler()
|
| 30 |
+
|
| 31 |
+
def fit(self, X):
|
| 32 |
+
_X = X.copy()
|
| 33 |
+
_X = self.scaler1.fit_transform(_X)
|
| 34 |
+
_X = np.tanh(_X)
|
| 35 |
+
_X = self.scaler2.fit(_X)
|
| 36 |
+
self.is_fitted_ = True
|
| 37 |
+
return self
|
| 38 |
+
|
| 39 |
+
def transform(self, X):
|
| 40 |
+
_X = X.copy()
|
| 41 |
+
_X = self.scaler1.transform(_X)
|
| 42 |
+
_X = np.tanh(_X)
|
| 43 |
+
return self.scaler2.transform(_X)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
SCALER_REGISTRY = {
|
| 47 |
+
None: FunctionTransformer,
|
| 48 |
+
"standard": StandardScaler,
|
| 49 |
+
"squash": SquashScaler,
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class SubSampler(TransformerMixin, BaseEstimator):
|
| 54 |
+
"""
|
| 55 |
+
Preprocessor that randomly samples `max_samples` from data.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
max_samples (int): Maximum allowed samples. If -1, all samples are retained.
|
| 59 |
+
|
| 60 |
+
Input:
|
| 61 |
+
np.ndarray: A 2D NumPy array of shape (n_samples, n_features).
|
| 62 |
+
|
| 63 |
+
Output:
|
| 64 |
+
np.ndarray: Subsampled array of shape (min(n_samples, max_samples), n_features).
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, *, max_samples=-1):
|
| 68 |
+
self.max_samples = max_samples
|
| 69 |
+
self.is_fitted_ = True
|
| 70 |
+
|
| 71 |
+
def fit(self, X: np.ndarray, y: np.ndarray | None = None):
|
| 72 |
+
return self
|
| 73 |
+
|
| 74 |
+
def transform(
|
| 75 |
+
self, X: np.ndarray, y: np.ndarray | None = None
|
| 76 |
+
) -> np.ndarray | tuple[np.ndarray]:
|
| 77 |
+
|
| 78 |
+
_X = X.copy()
|
| 79 |
+
_y = y.copy() if y is not None else None
|
| 80 |
+
|
| 81 |
+
if self.max_samples > 0 and _X.shape[0] > self.max_samples:
|
| 82 |
+
resample_idxs = np.random.choice(
|
| 83 |
+
np.arange(_X.shape[0]), size=(self.max_samples,), replace=True
|
| 84 |
+
)
|
| 85 |
+
_X = _X[resample_idxs]
|
| 86 |
+
_y = _y[resample_idxs] if _y is not None else None
|
| 87 |
+
|
| 88 |
+
if _y is None:
|
| 89 |
+
return _X
|
| 90 |
+
return _X, _y
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class FeatureSelector(FeatureDictMixin, TransformerMixin, BaseEstimator):
|
| 94 |
+
"""
|
| 95 |
+
Preprocessor that performs feature selection based on variance and correlation.
|
| 96 |
+
|
| 97 |
+
This transformer selects features that:
|
| 98 |
+
1. Have variance above a specified threshold.
|
| 99 |
+
2. Are below a given pairwise correlation threshold.
|
| 100 |
+
3. Among the remaining features, keeps only the top `max_features` with the highest variance.
|
| 101 |
+
|
| 102 |
+
The input and output are both dictionaries mapping feature types to their corresponding
|
| 103 |
+
feature matrices.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
min_var (float): Minimum variance required for a feature to be retained.
|
| 107 |
+
max_corr (float): Maximum allowed correlation between features.
|
| 108 |
+
Features exceeding this threshold with others are removed.
|
| 109 |
+
max_features (int): Maximum number of features to keep after filtering.
|
| 110 |
+
If -1, all remaining features are retained.
|
| 111 |
+
feature_keys (list[str]): Features to apply feature selection to.
|
| 112 |
+
independent_keys (bool): Apply filtering only within features types.
|
| 113 |
+
|
| 114 |
+
Input:
|
| 115 |
+
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
|
| 116 |
+
and each value is a 2D NumPy array of shape (n_samples, n_features).
|
| 117 |
+
|
| 118 |
+
Output:
|
| 119 |
+
dict[str, np.ndarray]: A dictionary with the same keys as the input,
|
| 120 |
+
containing only the selected features for each feature type.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def __init__(
|
| 124 |
+
self,
|
| 125 |
+
*,
|
| 126 |
+
min_var=0.0,
|
| 127 |
+
max_corr=1.0,
|
| 128 |
+
max_features=-1,
|
| 129 |
+
feature_keys=None,
|
| 130 |
+
min_var__feature_keys=None,
|
| 131 |
+
max_corr__feature_keys=None,
|
| 132 |
+
max_features__feature_keys=None,
|
| 133 |
+
min_var__independent_keys=False,
|
| 134 |
+
max_corr__independent_keys=False,
|
| 135 |
+
max_features__independent_keys=False,
|
| 136 |
+
):
|
| 137 |
+
self.min_var = min_var
|
| 138 |
+
self.max_corr = max_corr
|
| 139 |
+
self.max_features = max_features
|
| 140 |
+
|
| 141 |
+
self.min_var__feature_keys = min_var__feature_keys
|
| 142 |
+
self.max_corr__feature_keys = max_corr__feature_keys
|
| 143 |
+
self.max_features__feature_keys = max_features__feature_keys
|
| 144 |
+
|
| 145 |
+
self.min_var__independent_keys = min_var__independent_keys
|
| 146 |
+
self.max_corr__independent_keys = max_corr__independent_keys
|
| 147 |
+
self.max_features__independent_keys = max_features__independent_keys
|
| 148 |
+
|
| 149 |
+
super().__init__(feature_keys=feature_keys)
|
| 150 |
+
|
| 151 |
+
def _get_min_var_mask(self, X: np.ndarray, *args) -> np.ndarray:
|
| 152 |
+
var_thresh = VarianceThreshold(threshold=self.min_var)
|
| 153 |
+
return var_thresh.fit(X).get_support() # mask
|
| 154 |
+
|
| 155 |
+
def _get_max_corr_mask(
|
| 156 |
+
self, X: np.ndarray, prev_feature_mask: np.ndarray
|
| 157 |
+
) -> np.ndarray:
|
| 158 |
+
_prev_feature_mask = prev_feature_mask.copy()
|
| 159 |
+
corr_matrix = np.corrcoef(X[:, _prev_feature_mask], rowvar=False)
|
| 160 |
+
upper_tri = np.triu(corr_matrix, k=1)
|
| 161 |
+
to_keep = np.ones((sum(_prev_feature_mask),), dtype=bool)
|
| 162 |
+
for i in range(upper_tri.shape[0]):
|
| 163 |
+
for j in range(upper_tri.shape[1]):
|
| 164 |
+
if upper_tri[i, j] > self.max_corr:
|
| 165 |
+
to_keep[j] = False
|
| 166 |
+
|
| 167 |
+
_prev_feature_mask[_prev_feature_mask] = to_keep
|
| 168 |
+
return _prev_feature_mask
|
| 169 |
+
|
| 170 |
+
def _get_max_features_mask(
|
| 171 |
+
self, X: np.ndarray, prev_feature_mask: np.ndarray
|
| 172 |
+
) -> np.ndarray:
|
| 173 |
+
_prev_feature_mask = prev_feature_mask.copy()
|
| 174 |
+
# select features with at least max_var variation
|
| 175 |
+
feature_vars = np.nanvar(X[:, _prev_feature_mask], axis=0)
|
| 176 |
+
order = np.argsort(feature_vars)[: -(self.max_features + 1) : -1]
|
| 177 |
+
keep_feat_idx = np.arange(len(_prev_feature_mask))[order]
|
| 178 |
+
_prev_feature_mask = np.isin(
|
| 179 |
+
np.arange(len(_prev_feature_mask)), keep_feat_idx, assume_unique=True
|
| 180 |
+
)
|
| 181 |
+
return _prev_feature_mask
|
| 182 |
+
|
| 183 |
+
def apply_filter(self, filter, X, prev_feature_mask):
|
| 184 |
+
mask = prev_feature_mask.copy()
|
| 185 |
+
func = self.__getattribute__(f"_get_{filter}_mask")
|
| 186 |
+
feature_keys = self.__getattribute__(f"{filter}__feature_keys")
|
| 187 |
+
|
| 188 |
+
if self.__getattribute__(f"{filter}__independent_keys"):
|
| 189 |
+
for key in feature_keys:
|
| 190 |
+
key_mask = self._curr_keys == key
|
| 191 |
+
mask[key_mask] = func(X[:, key_mask], mask[key_mask])
|
| 192 |
+
|
| 193 |
+
else:
|
| 194 |
+
feature_key_mask = np.isin(self._curr_keys, feature_keys)
|
| 195 |
+
mask[feature_key_mask] = func(
|
| 196 |
+
X[:, feature_key_mask], mask[feature_key_mask]
|
| 197 |
+
)
|
| 198 |
+
return mask
|
| 199 |
+
|
| 200 |
+
def fit(self, X: dict[str, np.ndarray]):
|
| 201 |
+
_X = self.dict_to_array(X)
|
| 202 |
+
feature_mask = np.ones((_X.shape[1]), dtype=bool)
|
| 203 |
+
|
| 204 |
+
# select features with at least min_var variation
|
| 205 |
+
if self.min_var > 0.0:
|
| 206 |
+
if self.min_var__independent_keys:
|
| 207 |
+
for key in self.min_var__feature_keys:
|
| 208 |
+
key_mask = self._curr_keys == key
|
| 209 |
+
feature_mask[key_mask] = self._get_min_var_mask(_X[:, key_mask])
|
| 210 |
+
|
| 211 |
+
else:
|
| 212 |
+
feature_key_mask = np.isin(self._curr_keys, self.min_var__feature_keys)
|
| 213 |
+
feature_mask[feature_key_mask] = self._get_min_var_mask(
|
| 214 |
+
_X[:, feature_key_mask]
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# select features with at least max_var variation
|
| 218 |
+
if self.max_corr < 1.0:
|
| 219 |
+
if self.max_corr__independent_keys:
|
| 220 |
+
for key in self.max_corr__feature_keys:
|
| 221 |
+
key_mask = self._curr_keys == key
|
| 222 |
+
subset = _X[:, key_mask]
|
| 223 |
+
feature_mask[key_mask] = self._get_max_corr_mask(
|
| 224 |
+
subset, feature_mask[key_mask]
|
| 225 |
+
)
|
| 226 |
+
else:
|
| 227 |
+
feature_key_mask = np.isin(self._curr_keys, self.max_corr__feature_keys)
|
| 228 |
+
feature_mask[feature_key_mask] = self._get_max_corr_mask(
|
| 229 |
+
_X[:, feature_key_mask], feature_mask[feature_key_mask]
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
if self.max_features == 0:
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"max_features (={self.max_features}) must be -1 or larger 0."
|
| 235 |
+
)
|
| 236 |
+
elif self.max_features > 0:
|
| 237 |
+
if self.max_features__independent_keys:
|
| 238 |
+
for key in self.max_features__feature_keys:
|
| 239 |
+
key_mask = self._curr_keys == key
|
| 240 |
+
feature_mask[key_mask] = self._get_max_features_mask(
|
| 241 |
+
_X[:, key_mask], feature_mask[key_mask]
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
feature_key_mask = np.isin(
|
| 245 |
+
self._curr_keys, self.max_features__feature_keys
|
| 246 |
+
)
|
| 247 |
+
feature_mask[feature_key_mask] = self._get_max_features_mask(
|
| 248 |
+
_X[:, feature_key_mask], feature_mask[feature_key_mask]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self._feature_mask = feature_mask
|
| 252 |
+
self.is_fitted_ = True
|
| 253 |
+
return self
|
| 254 |
+
|
| 255 |
+
def transform(self, X: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
|
| 256 |
+
_X = self.dict_to_array(X)
|
| 257 |
+
_X = _X[:, self._feature_mask]
|
| 258 |
+
self._curr_keys = self._curr_keys[self._feature_mask]
|
| 259 |
+
return self.array_to_dict(_X)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class QuantileCreator(FeatureDictMixin, TransformerMixin, BaseEstimator):
|
| 263 |
+
"""
|
| 264 |
+
Preprocessor that transforms features into empirical quantiles using ECDFs.
|
| 265 |
+
|
| 266 |
+
This transformer applies an Empirical Cumulative Distribution Function (ECDF)
|
| 267 |
+
to each feature and replaces feature values with their corresponding quantile
|
| 268 |
+
ranks. The transformation is applied independently to each feature type.
|
| 269 |
+
|
| 270 |
+
Both input and output are dictionaries mapping feature types to their
|
| 271 |
+
corresponding feature matrices.
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
feature_keys (list[str]): Features to apply quantile creation to.
|
| 275 |
+
|
| 276 |
+
Input:
|
| 277 |
+
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
|
| 278 |
+
and each value is a 2D NumPy array of shape (n_samples, n_features).
|
| 279 |
+
|
| 280 |
+
Output:
|
| 281 |
+
dict[str, np.ndarray]: A dictionary with the same keys as the input,
|
| 282 |
+
where each feature value is replaced by its corresponding ECDF quantile rank.
|
| 283 |
+
"""
|
| 284 |
+
|
| 285 |
+
def __init__(self, *, feature_keys=None):
|
| 286 |
+
self._ecdfs = None
|
| 287 |
+
super().__init__(feature_keys=feature_keys)
|
| 288 |
+
|
| 289 |
+
def fit(self, X: dict[str, np.ndarray]):
|
| 290 |
+
_X = self.dict_to_array(X)
|
| 291 |
+
ecdfs = []
|
| 292 |
+
for column in range(_X.shape[1]):
|
| 293 |
+
raw_values = _X[:, column].reshape(-1)
|
| 294 |
+
ecdfs.append(ECDF(raw_values))
|
| 295 |
+
self._ecdfs = ecdfs
|
| 296 |
+
self.is_fitted_ = True
|
| 297 |
+
return self
|
| 298 |
+
|
| 299 |
+
def transform(self, X: dict[str, np.ndarray]) -> np.ndarray:
|
| 300 |
+
_X = self.dict_to_array(X)
|
| 301 |
+
|
| 302 |
+
quantiles = np.zeros_like(_X)
|
| 303 |
+
for column in range(_X.shape[1]):
|
| 304 |
+
raw_values = _X[:, column].reshape(-1)
|
| 305 |
+
ecdf = self._ecdfs[column]
|
| 306 |
+
q = ecdf(raw_values)
|
| 307 |
+
quantiles[:, column] = q
|
| 308 |
+
|
| 309 |
+
return self.array_to_dict(quantiles)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class FeaturePreprocessor(TransformerMixin, BaseEstimator):
|
| 313 |
+
"""This class implements the feature preprocessing from a dictionary of molecule features."""
|
| 314 |
+
|
| 315 |
+
def __init__(
|
| 316 |
+
self,
|
| 317 |
+
feature_selection_config: dict[str, Any],
|
| 318 |
+
feature_quantilization_config: dict[str, Any],
|
| 319 |
+
descriptors: list[str],
|
| 320 |
+
max_samples: int = -1,
|
| 321 |
+
scaler: str = "standard",
|
| 322 |
+
):
|
| 323 |
+
self.descriptors = descriptors
|
| 324 |
+
|
| 325 |
+
self.feature_quantilization_config = copy.deepcopy(
|
| 326 |
+
feature_quantilization_config
|
| 327 |
+
)
|
| 328 |
+
self.use_feat_quant = self.feature_quantilization_config.pop("use")
|
| 329 |
+
self.quantile_creator = QuantileCreator(**self.feature_quantilization_config)
|
| 330 |
+
|
| 331 |
+
self.feature_selection_config = copy.deepcopy(feature_selection_config)
|
| 332 |
+
self.use_feat_selec = self.feature_selection_config.pop("use")
|
| 333 |
+
self.feature_selection_config["feature_keys"] = descriptors
|
| 334 |
+
self.feature_selector = FeatureSelector(**self.feature_selection_config)
|
| 335 |
+
|
| 336 |
+
self.max_samples = max_samples
|
| 337 |
+
self.sub_sampler = SubSampler(max_samples=max_samples)
|
| 338 |
+
|
| 339 |
+
self.scaler = SCALER_REGISTRY[scaler]()
|
| 340 |
+
|
| 341 |
+
def __getstate__(self):
|
| 342 |
+
state = super().__getstate__()
|
| 343 |
+
state["quantile_creator"] = self.quantile_creator.__getstate__()
|
| 344 |
+
state["feature_selector"] = self.feature_selector.__getstate__()
|
| 345 |
+
state["sub_sampler"] = self.sub_sampler.__getstate__()
|
| 346 |
+
state["scaler"] = self.scaler.__getstate__()
|
| 347 |
+
return state
|
| 348 |
+
|
| 349 |
+
def __setstate__(self, state):
|
| 350 |
+
_state = copy.deepcopy(state)
|
| 351 |
+
self.quantile_creator.__setstate__(_state.pop("quantile_creator"))
|
| 352 |
+
self.feature_selector.__setstate__(_state.pop("feature_selector"))
|
| 353 |
+
self.sub_sampler.__setstate__(_state.pop("sub_sampler"))
|
| 354 |
+
self.scaler.__setstate__(_state.pop("scaler"))
|
| 355 |
+
super().__setstate__(_state)
|
| 356 |
+
|
| 357 |
+
def get_state(self):
|
| 358 |
+
return self.__getstate__()
|
| 359 |
+
|
| 360 |
+
def set_state(self, state):
|
| 361 |
+
return self.__setstate__(state)
|
| 362 |
+
|
| 363 |
+
def fit(self, X: dict[str, np.ndarray]):
|
| 364 |
+
"""Fit the processor transformers"""
|
| 365 |
+
_X = copy.deepcopy(X)
|
| 366 |
+
|
| 367 |
+
if self.use_feat_quant:
|
| 368 |
+
_X = self.quantile_creator.fit_transform(_X)
|
| 369 |
+
|
| 370 |
+
if self.use_feat_selec:
|
| 371 |
+
_X = self.feature_selector.fit_transform(_X)
|
| 372 |
+
|
| 373 |
+
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
|
| 374 |
+
self.scaler.fit(_X)
|
| 375 |
+
return self
|
| 376 |
+
|
| 377 |
+
def transform(
|
| 378 |
+
self, X: np.ndarray, y: np.ndarray | None = None
|
| 379 |
+
) -> np.ndarray | tuple[np.ndarray]:
|
| 380 |
+
|
| 381 |
+
_X = X.copy()
|
| 382 |
+
_y = y.copy() if y is not None else None
|
| 383 |
+
|
| 384 |
+
if self.use_feat_quant:
|
| 385 |
+
_X = self.quantile_creator.transform(_X)
|
| 386 |
+
if self.use_feat_selec:
|
| 387 |
+
_X = self.feature_selector.transform(_X)
|
| 388 |
+
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
|
| 389 |
+
_X = self.scaler.transform(_X)
|
| 390 |
+
|
| 391 |
+
if _y is None:
|
| 392 |
+
_X = self.sub_sampler.transform(_X)
|
| 393 |
+
return _X
|
| 394 |
+
|
| 395 |
+
_X, _y = self.sub_sampler.transform(_X, _y)
|
| 396 |
+
return _X, _y
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
|
| 400 |
+
"""This function creates cleaned RDKit mol objects from a list of SMILES.
|
| 401 |
+
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 402 |
+
Modification by Antonia Ebner:
|
| 403 |
+
- skip uncleanable molecules
|
| 404 |
+
- return clean molecule mask
|
| 405 |
+
|
| 406 |
+
Args:
|
| 407 |
+
smiles (list[str]): list of SMILES
|
| 408 |
+
|
| 409 |
+
Returns:
|
| 410 |
+
list[Mol]: list of cleaned molecules
|
| 411 |
+
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
|
| 412 |
+
index `i` could not be cleaned and was removed.
|
| 413 |
+
"""
|
| 414 |
+
sm = Standardizer(canon_taut=True)
|
| 415 |
+
|
| 416 |
+
clean_mol_mask = list()
|
| 417 |
+
mols = list()
|
| 418 |
+
for i, smile in enumerate(smiles):
|
| 419 |
+
mol = Chem.MolFromSmiles(smile)
|
| 420 |
+
standardized_mol, _ = sm.standardize_mol(mol)
|
| 421 |
+
is_cleaned = standardized_mol is not None
|
| 422 |
+
clean_mol_mask.append(is_cleaned)
|
| 423 |
+
if not is_cleaned:
|
| 424 |
+
continue
|
| 425 |
+
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
|
| 426 |
+
mols.append(can_mol)
|
| 427 |
+
|
| 428 |
+
return mols, np.array(clean_mol_mask)
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def create_ecfp_fps(mols: list[Mol], radius=3, fpsize=2048, **kwargs) -> np.ndarray:
|
| 432 |
+
"""This function ECFP fingerprints for a list of molecules.
|
| 433 |
+
Inspired by from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 434 |
+
|
| 435 |
+
Args:
|
| 436 |
+
mols (list[Mol]): list of molecules
|
| 437 |
+
|
| 438 |
+
Returns:
|
| 439 |
+
np.ndarray: ECFP fingerprints of molecules
|
| 440 |
+
"""
|
| 441 |
+
ecfps = list()
|
| 442 |
+
|
| 443 |
+
for mol in mols:
|
| 444 |
+
gen = rdFingerprintGenerator.GetMorganGenerator(
|
| 445 |
+
countSimulation=True, fpSize=fpsize, radius=radius
|
| 446 |
+
)
|
| 447 |
+
fp_sparse_vec = gen.GetCountFingerprint(mol)
|
| 448 |
+
|
| 449 |
+
fp = np.zeros((0,), np.int8)
|
| 450 |
+
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
|
| 451 |
+
|
| 452 |
+
ecfps.append(fp)
|
| 453 |
+
|
| 454 |
+
return np.array(ecfps)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
|
| 458 |
+
"""This function creates MACCS keys for a list of molecules.
|
| 459 |
+
|
| 460 |
+
Args:
|
| 461 |
+
mols (list[Mol]): list of molecules
|
| 462 |
+
|
| 463 |
+
Returns:
|
| 464 |
+
np.ndarray: MACCS keys of molecules
|
| 465 |
+
"""
|
| 466 |
+
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
|
| 467 |
+
return np.array(maccs)
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
def get_tox_patterns(filepath: str):
|
| 471 |
+
"""This retrieves the tox features defined in filepath.
|
| 472 |
+
Args:
|
| 473 |
+
filepath (str): A list of tox features
|
| 474 |
+
"""
|
| 475 |
+
# load patterns
|
| 476 |
+
with open(filepath) as f:
|
| 477 |
+
smarts_list = [s[1] for s in json.load(f)]
|
| 478 |
+
|
| 479 |
+
# Code does not work for this case
|
| 480 |
+
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
|
| 481 |
+
|
| 482 |
+
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
|
| 483 |
+
# and then use them for all molecules. This gives a huge speedup over existing code.
|
| 484 |
+
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
|
| 485 |
+
all_patterns = []
|
| 486 |
+
for smarts in smarts_list:
|
| 487 |
+
patterns = [] # list of smarts-patterns
|
| 488 |
+
# value for each of the patterns above. Negates the values of the above later.
|
| 489 |
+
negations = []
|
| 490 |
+
|
| 491 |
+
if " AND " in smarts:
|
| 492 |
+
smarts = smarts.split(" AND ")
|
| 493 |
+
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
|
| 494 |
+
else:
|
| 495 |
+
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
|
| 496 |
+
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
|
| 497 |
+
smarts = smarts.split(" OR ")
|
| 498 |
+
merge_any = True
|
| 499 |
+
|
| 500 |
+
# for all subsmarts check if they are preceded by 'NOT '
|
| 501 |
+
for s in smarts:
|
| 502 |
+
neg = s.startswith("NOT ")
|
| 503 |
+
if neg:
|
| 504 |
+
s = s[4:]
|
| 505 |
+
patterns.append(Chem.MolFromSmarts(s))
|
| 506 |
+
negations.append(neg)
|
| 507 |
+
|
| 508 |
+
all_patterns.append((patterns, negations, merge_any))
|
| 509 |
+
return all_patterns
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
|
| 513 |
+
"""Matches the tox patterns against a molecule. Returns a boolean array"""
|
| 514 |
+
tox_data = []
|
| 515 |
+
for mol in mols:
|
| 516 |
+
mol_features = []
|
| 517 |
+
for patts, negations, merge_any in patterns:
|
| 518 |
+
matches = [mol.HasSubstructMatch(p) for p in patts]
|
| 519 |
+
matches = [m != n for m, n in zip(matches, negations)]
|
| 520 |
+
if merge_any:
|
| 521 |
+
pres = any(matches)
|
| 522 |
+
else:
|
| 523 |
+
pres = all(matches)
|
| 524 |
+
mol_features.append(pres)
|
| 525 |
+
|
| 526 |
+
tox_data.append(np.array(mol_features))
|
| 527 |
+
|
| 528 |
+
return np.array(tox_data)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
|
| 532 |
+
"""This function creates RDKit descriptors for a list of molecules.
|
| 533 |
+
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 534 |
+
|
| 535 |
+
Args:
|
| 536 |
+
mols (list[Mol]): list of molecules
|
| 537 |
+
|
| 538 |
+
Returns:
|
| 539 |
+
np.ndarray: RDKit descriptors of molecules
|
| 540 |
+
"""
|
| 541 |
+
rdkit_descriptors = list()
|
| 542 |
+
|
| 543 |
+
for mol in mols:
|
| 544 |
+
descrs = []
|
| 545 |
+
for _, descr_calc_fn in Descriptors._descList:
|
| 546 |
+
descrs.append(descr_calc_fn(mol))
|
| 547 |
+
|
| 548 |
+
descrs = np.array(descrs)
|
| 549 |
+
descrs = descrs[USED_200_DESCR]
|
| 550 |
+
rdkit_descriptors.append(descrs)
|
| 551 |
+
|
| 552 |
+
return np.array(rdkit_descriptors)
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
|
| 556 |
+
"""Create quantile values for given features using the columns
|
| 557 |
+
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 558 |
+
|
| 559 |
+
Args:
|
| 560 |
+
raw_features (np.ndarray): values to put into quantiles
|
| 561 |
+
ecdfs (list): ECDFs to use
|
| 562 |
+
|
| 563 |
+
Returns:
|
| 564 |
+
np.ndarray: computed quantiles
|
| 565 |
+
"""
|
| 566 |
+
quantiles = np.zeros_like(raw_features)
|
| 567 |
+
|
| 568 |
+
for column in range(raw_features.shape[1]):
|
| 569 |
+
raw_values = raw_features[:, column].reshape(-1)
|
| 570 |
+
ecdf = ecdfs[column]
|
| 571 |
+
q = ecdf(raw_values)
|
| 572 |
+
quantiles[:, column] = q
|
| 573 |
+
|
| 574 |
+
return quantiles
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def fill(features, mask, value=np.nan):
|
| 578 |
+
n_mols = len(mask)
|
| 579 |
+
n_features = features.shape[1]
|
| 580 |
+
|
| 581 |
+
data = np.zeros(shape=(n_mols, n_features))
|
| 582 |
+
data.fill(value)
|
| 583 |
+
data[~mask] = features
|
| 584 |
+
return data
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def create_descriptors(
|
| 588 |
+
smiles,
|
| 589 |
+
descriptors,
|
| 590 |
+
**ecfp_kwargs,
|
| 591 |
+
):
|
| 592 |
+
"""Generate molecular descriptors for multiple SMILES strings.
|
| 593 |
+
Inspired by https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 594 |
+
|
| 595 |
+
Each SMILES is processed and sanitized using RDKit.
|
| 596 |
+
SMILES that cannot be sanitized are encoded with NaNs, and a corresponding boolean mask
|
| 597 |
+
is returned to indicate which inputs were successfully processed.
|
| 598 |
+
|
| 599 |
+
Args:
|
| 600 |
+
smiles (list[str]): List of SMILES strings for which to generate descriptors.
|
| 601 |
+
descriptors (list[str]): List of descriptor types to compute.
|
| 602 |
+
Supported values include:
|
| 603 |
+
['ecfps', 'tox', 'maccs', 'rdkit_descrs'].
|
| 604 |
+
|
| 605 |
+
Returns:
|
| 606 |
+
tuple[dict[str, np.ndarray], np.ndarray]:
|
| 607 |
+
- A dictionary mapping descriptor names to their computed arrays.
|
| 608 |
+
- A boolean mask of shape (len(smiles),) indicating which SMILES
|
| 609 |
+
were successfully sanitized and processed.
|
| 610 |
+
"""
|
| 611 |
+
# Create cleanded rdkit mol objects
|
| 612 |
+
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
|
| 613 |
+
print(f"Cleaned molecules, {(~clean_mol_mask).sum()} could not be sanitized")
|
| 614 |
+
|
| 615 |
+
# Create fingerprints and descriptors
|
| 616 |
+
if "ecfps" in descriptors:
|
| 617 |
+
ecfps = create_ecfp_fps(mols, **ecfp_kwargs)
|
| 618 |
+
ecfps = fill(ecfps, ~clean_mol_mask)
|
| 619 |
+
print("Created ECFP fingerprints")
|
| 620 |
+
|
| 621 |
+
if "tox" in descriptors:
|
| 622 |
+
tox_patterns = get_tox_patterns(TOX_SMARTS_PATH)
|
| 623 |
+
tox = create_tox_features(mols, tox_patterns)
|
| 624 |
+
tox = fill(tox, ~clean_mol_mask)
|
| 625 |
+
print("Created Tox features")
|
| 626 |
+
|
| 627 |
+
if "maccs" in descriptors:
|
| 628 |
+
maccs = create_maccs_keys(mols)
|
| 629 |
+
maccs = fill(maccs, ~clean_mol_mask)
|
| 630 |
+
print("Created MACCS keys")
|
| 631 |
+
|
| 632 |
+
if "rdkit_descrs" in descriptors:
|
| 633 |
+
rdkit_descrs = create_rdkit_descriptors(mols)
|
| 634 |
+
rdkit_descrs = fill(rdkit_descrs, ~clean_mol_mask)
|
| 635 |
+
print("Created RDKit descriptors")
|
| 636 |
+
|
| 637 |
+
# concatenate features
|
| 638 |
+
features = {}
|
| 639 |
+
for descr in descriptors:
|
| 640 |
+
features[descr] = vars()[descr]
|
| 641 |
+
|
| 642 |
+
return features, clean_mol_mask
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
def get_tox21_split(token, cvfold=None):
|
| 646 |
+
"""Retrieve Tox21 splits from HuggingFace with respect to given cvfold."""
|
| 647 |
+
ds = load_dataset("ml-jku/tox21", token=token)
|
| 648 |
+
|
| 649 |
+
train_df = ds["train"].to_pandas()
|
| 650 |
+
val_df = ds["validation"].to_pandas()
|
| 651 |
+
|
| 652 |
+
if cvfold is None:
|
| 653 |
+
return {"train": train_df, "validation": val_df}
|
| 654 |
+
|
| 655 |
+
combined_df = pd.concat([train_df, val_df], ignore_index=True)
|
| 656 |
+
cvfold = float(cvfold)
|
| 657 |
+
|
| 658 |
+
# create new splits
|
| 659 |
+
cvfold = float(cvfold)
|
| 660 |
+
train_df = combined_df[combined_df.CVfold != cvfold]
|
| 661 |
+
val_df = combined_df[combined_df.CVfold == cvfold]
|
| 662 |
+
|
| 663 |
+
# exclude train mols that occur in the validation split
|
| 664 |
+
val_inchikeys = set(val_df["inchikey"])
|
| 665 |
+
train_df = train_df[~train_df["inchikey"].isin(val_inchikeys)]
|
| 666 |
+
|
| 667 |
+
return {
|
| 668 |
+
"train": train_df.reset_index(drop=True),
|
| 669 |
+
"validation": val_df.reset_index(drop=True),
|
| 670 |
+
}
|
src/utils.py
ADDED
|
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## These MolStandardizer classes are due to Paolo Tosco
|
| 2 |
+
## It was taken from the FS-Mol github
|
| 3 |
+
## (https://github.com/microsoft/FS-Mol/blob/main/fs_mol/preprocessing/utils/
|
| 4 |
+
## standardizer.py)
|
| 5 |
+
## They ensure that a sequence of standardization operations are applied
|
| 6 |
+
## https://gist.github.com/ptosco/7e6b9ab9cc3e44ba0919060beaed198e
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import pickle
|
| 10 |
+
from typing import Any
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
from rdkit import Chem
|
| 15 |
+
from rdkit.Chem.MolStandardize import rdMolStandardize
|
| 16 |
+
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 18 |
+
PAD_VALUE = -100
|
| 19 |
+
TOX_SMARTS_PATH = "data/tox_smarts.json"
|
| 20 |
+
|
| 21 |
+
TASKS = [
|
| 22 |
+
"NR-AR",
|
| 23 |
+
"NR-AR-LBD",
|
| 24 |
+
"NR-AhR",
|
| 25 |
+
"NR-Aromatase",
|
| 26 |
+
"NR-ER",
|
| 27 |
+
"NR-ER-LBD",
|
| 28 |
+
"NR-PPAR-gamma",
|
| 29 |
+
"SR-ARE",
|
| 30 |
+
"SR-ATAD5",
|
| 31 |
+
"SR-HSE",
|
| 32 |
+
"SR-MMP",
|
| 33 |
+
"SR-p53",
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
USED_200_DESCR = [
|
| 37 |
+
0,
|
| 38 |
+
1,
|
| 39 |
+
2,
|
| 40 |
+
3,
|
| 41 |
+
4,
|
| 42 |
+
5,
|
| 43 |
+
6,
|
| 44 |
+
7,
|
| 45 |
+
8,
|
| 46 |
+
9,
|
| 47 |
+
10,
|
| 48 |
+
11,
|
| 49 |
+
12,
|
| 50 |
+
13,
|
| 51 |
+
14,
|
| 52 |
+
15,
|
| 53 |
+
16,
|
| 54 |
+
25,
|
| 55 |
+
26,
|
| 56 |
+
27,
|
| 57 |
+
28,
|
| 58 |
+
29,
|
| 59 |
+
30,
|
| 60 |
+
31,
|
| 61 |
+
32,
|
| 62 |
+
33,
|
| 63 |
+
34,
|
| 64 |
+
35,
|
| 65 |
+
36,
|
| 66 |
+
37,
|
| 67 |
+
38,
|
| 68 |
+
39,
|
| 69 |
+
40,
|
| 70 |
+
41,
|
| 71 |
+
42,
|
| 72 |
+
43,
|
| 73 |
+
44,
|
| 74 |
+
45,
|
| 75 |
+
46,
|
| 76 |
+
47,
|
| 77 |
+
48,
|
| 78 |
+
49,
|
| 79 |
+
50,
|
| 80 |
+
51,
|
| 81 |
+
52,
|
| 82 |
+
53,
|
| 83 |
+
54,
|
| 84 |
+
55,
|
| 85 |
+
56,
|
| 86 |
+
57,
|
| 87 |
+
58,
|
| 88 |
+
59,
|
| 89 |
+
60,
|
| 90 |
+
61,
|
| 91 |
+
62,
|
| 92 |
+
63,
|
| 93 |
+
64,
|
| 94 |
+
65,
|
| 95 |
+
66,
|
| 96 |
+
67,
|
| 97 |
+
68,
|
| 98 |
+
69,
|
| 99 |
+
70,
|
| 100 |
+
71,
|
| 101 |
+
72,
|
| 102 |
+
73,
|
| 103 |
+
74,
|
| 104 |
+
75,
|
| 105 |
+
76,
|
| 106 |
+
77,
|
| 107 |
+
78,
|
| 108 |
+
79,
|
| 109 |
+
80,
|
| 110 |
+
81,
|
| 111 |
+
82,
|
| 112 |
+
83,
|
| 113 |
+
84,
|
| 114 |
+
85,
|
| 115 |
+
86,
|
| 116 |
+
87,
|
| 117 |
+
88,
|
| 118 |
+
89,
|
| 119 |
+
90,
|
| 120 |
+
91,
|
| 121 |
+
92,
|
| 122 |
+
93,
|
| 123 |
+
94,
|
| 124 |
+
95,
|
| 125 |
+
96,
|
| 126 |
+
97,
|
| 127 |
+
98,
|
| 128 |
+
99,
|
| 129 |
+
100,
|
| 130 |
+
101,
|
| 131 |
+
102,
|
| 132 |
+
103,
|
| 133 |
+
104,
|
| 134 |
+
105,
|
| 135 |
+
106,
|
| 136 |
+
107,
|
| 137 |
+
108,
|
| 138 |
+
109,
|
| 139 |
+
110,
|
| 140 |
+
111,
|
| 141 |
+
112,
|
| 142 |
+
113,
|
| 143 |
+
114,
|
| 144 |
+
115,
|
| 145 |
+
116,
|
| 146 |
+
117,
|
| 147 |
+
118,
|
| 148 |
+
119,
|
| 149 |
+
120,
|
| 150 |
+
121,
|
| 151 |
+
122,
|
| 152 |
+
123,
|
| 153 |
+
124,
|
| 154 |
+
125,
|
| 155 |
+
126,
|
| 156 |
+
127,
|
| 157 |
+
128,
|
| 158 |
+
129,
|
| 159 |
+
130,
|
| 160 |
+
131,
|
| 161 |
+
132,
|
| 162 |
+
133,
|
| 163 |
+
134,
|
| 164 |
+
135,
|
| 165 |
+
136,
|
| 166 |
+
137,
|
| 167 |
+
138,
|
| 168 |
+
139,
|
| 169 |
+
140,
|
| 170 |
+
141,
|
| 171 |
+
142,
|
| 172 |
+
143,
|
| 173 |
+
144,
|
| 174 |
+
145,
|
| 175 |
+
146,
|
| 176 |
+
147,
|
| 177 |
+
148,
|
| 178 |
+
149,
|
| 179 |
+
150,
|
| 180 |
+
151,
|
| 181 |
+
152,
|
| 182 |
+
153,
|
| 183 |
+
154,
|
| 184 |
+
155,
|
| 185 |
+
156,
|
| 186 |
+
157,
|
| 187 |
+
158,
|
| 188 |
+
159,
|
| 189 |
+
160,
|
| 190 |
+
161,
|
| 191 |
+
162,
|
| 192 |
+
163,
|
| 193 |
+
164,
|
| 194 |
+
165,
|
| 195 |
+
166,
|
| 196 |
+
167,
|
| 197 |
+
168,
|
| 198 |
+
169,
|
| 199 |
+
170,
|
| 200 |
+
171,
|
| 201 |
+
172,
|
| 202 |
+
173,
|
| 203 |
+
174,
|
| 204 |
+
175,
|
| 205 |
+
176,
|
| 206 |
+
177,
|
| 207 |
+
178,
|
| 208 |
+
179,
|
| 209 |
+
180,
|
| 210 |
+
181,
|
| 211 |
+
182,
|
| 212 |
+
183,
|
| 213 |
+
184,
|
| 214 |
+
185,
|
| 215 |
+
186,
|
| 216 |
+
187,
|
| 217 |
+
188,
|
| 218 |
+
189,
|
| 219 |
+
190,
|
| 220 |
+
191,
|
| 221 |
+
192,
|
| 222 |
+
193,
|
| 223 |
+
194,
|
| 224 |
+
195,
|
| 225 |
+
196,
|
| 226 |
+
197,
|
| 227 |
+
198,
|
| 228 |
+
199,
|
| 229 |
+
200,
|
| 230 |
+
201,
|
| 231 |
+
202,
|
| 232 |
+
203,
|
| 233 |
+
204,
|
| 234 |
+
205,
|
| 235 |
+
206,
|
| 236 |
+
207,
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class Standardizer:
|
| 241 |
+
"""
|
| 242 |
+
Simple wrapper class around rdkit Standardizer.
|
| 243 |
+
"""
|
| 244 |
+
|
| 245 |
+
DEFAULT_CANON_TAUT = False
|
| 246 |
+
DEFAULT_METAL_DISCONNECT = False
|
| 247 |
+
MAX_TAUTOMERS = 100
|
| 248 |
+
MAX_TRANSFORMS = 100
|
| 249 |
+
MAX_RESTARTS = 200
|
| 250 |
+
PREFER_ORGANIC = True
|
| 251 |
+
|
| 252 |
+
def __init__(
|
| 253 |
+
self,
|
| 254 |
+
metal_disconnect=None,
|
| 255 |
+
canon_taut=None,
|
| 256 |
+
):
|
| 257 |
+
"""
|
| 258 |
+
Constructor.
|
| 259 |
+
All parameters are optional.
|
| 260 |
+
:param metal_disconnect: if True, metallorganic complexes are
|
| 261 |
+
disconnected
|
| 262 |
+
:param canon_taut: if True, molecules are converted to their
|
| 263 |
+
canonical tautomer
|
| 264 |
+
"""
|
| 265 |
+
super().__init__()
|
| 266 |
+
if metal_disconnect is None:
|
| 267 |
+
metal_disconnect = self.DEFAULT_METAL_DISCONNECT
|
| 268 |
+
if canon_taut is None:
|
| 269 |
+
canon_taut = self.DEFAULT_CANON_TAUT
|
| 270 |
+
self._canon_taut = canon_taut
|
| 271 |
+
self._metal_disconnect = metal_disconnect
|
| 272 |
+
self._taut_enumerator = None
|
| 273 |
+
self._uncharger = None
|
| 274 |
+
self._lfrag_chooser = None
|
| 275 |
+
self._metal_disconnector = None
|
| 276 |
+
self._normalizer = None
|
| 277 |
+
self._reionizer = None
|
| 278 |
+
self._params = None
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
def params(self):
|
| 282 |
+
"""Return the MolStandardize CleanupParameters."""
|
| 283 |
+
if self._params is None:
|
| 284 |
+
self._params = rdMolStandardize.CleanupParameters()
|
| 285 |
+
self._params.maxTautomers = self.MAX_TAUTOMERS
|
| 286 |
+
self._params.maxTransforms = self.MAX_TRANSFORMS
|
| 287 |
+
self._params.maxRestarts = self.MAX_RESTARTS
|
| 288 |
+
self._params.preferOrganic = self.PREFER_ORGANIC
|
| 289 |
+
self._params.tautomerRemoveSp3Stereo = False
|
| 290 |
+
return self._params
|
| 291 |
+
|
| 292 |
+
@property
|
| 293 |
+
def canon_taut(self):
|
| 294 |
+
"""Return whether tautomer canonicalization will be done."""
|
| 295 |
+
return self._canon_taut
|
| 296 |
+
|
| 297 |
+
@property
|
| 298 |
+
def metal_disconnect(self):
|
| 299 |
+
"""Return whether metallorganic complexes will be disconnected."""
|
| 300 |
+
return self._metal_disconnect
|
| 301 |
+
|
| 302 |
+
@property
|
| 303 |
+
def taut_enumerator(self):
|
| 304 |
+
"""Return the TautomerEnumerator object."""
|
| 305 |
+
if self._taut_enumerator is None:
|
| 306 |
+
self._taut_enumerator = rdMolStandardize.TautomerEnumerator(self.params)
|
| 307 |
+
return self._taut_enumerator
|
| 308 |
+
|
| 309 |
+
@property
|
| 310 |
+
def uncharger(self):
|
| 311 |
+
"""Return the Uncharger object."""
|
| 312 |
+
if self._uncharger is None:
|
| 313 |
+
self._uncharger = rdMolStandardize.Uncharger()
|
| 314 |
+
return self._uncharger
|
| 315 |
+
|
| 316 |
+
@property
|
| 317 |
+
def lfrag_chooser(self):
|
| 318 |
+
"""Return the LargestFragmentChooser object."""
|
| 319 |
+
if self._lfrag_chooser is None:
|
| 320 |
+
self._lfrag_chooser = rdMolStandardize.LargestFragmentChooser(
|
| 321 |
+
self.params.preferOrganic
|
| 322 |
+
)
|
| 323 |
+
return self._lfrag_chooser
|
| 324 |
+
|
| 325 |
+
@property
|
| 326 |
+
def metal_disconnector(self):
|
| 327 |
+
"""Return the MetalDisconnector object."""
|
| 328 |
+
if self._metal_disconnector is None:
|
| 329 |
+
self._metal_disconnector = rdMolStandardize.MetalDisconnector()
|
| 330 |
+
return self._metal_disconnector
|
| 331 |
+
|
| 332 |
+
@property
|
| 333 |
+
def normalizer(self):
|
| 334 |
+
"""Return the Normalizer object."""
|
| 335 |
+
if self._normalizer is None:
|
| 336 |
+
self._normalizer = rdMolStandardize.Normalizer(
|
| 337 |
+
self.params.normalizationsFile, self.params.maxRestarts
|
| 338 |
+
)
|
| 339 |
+
return self._normalizer
|
| 340 |
+
|
| 341 |
+
@property
|
| 342 |
+
def reionizer(self):
|
| 343 |
+
"""Return the Reionizer object."""
|
| 344 |
+
if self._reionizer is None:
|
| 345 |
+
self._reionizer = rdMolStandardize.Reionizer(self.params.acidbaseFile)
|
| 346 |
+
return self._reionizer
|
| 347 |
+
|
| 348 |
+
def charge_parent(self, mol_in):
|
| 349 |
+
"""Sequentially apply a series of MolStandardize operations:
|
| 350 |
+
* MetalDisconnector
|
| 351 |
+
* Normalizer
|
| 352 |
+
* Reionizer
|
| 353 |
+
* LargestFragmentChooser
|
| 354 |
+
* Uncharger
|
| 355 |
+
The net result is that a desalted, normalized, neutral
|
| 356 |
+
molecule with implicit Hs is returned.
|
| 357 |
+
"""
|
| 358 |
+
params = Chem.RemoveHsParameters()
|
| 359 |
+
params.removeAndTrackIsotopes = True
|
| 360 |
+
mol_in = Chem.RemoveHs(mol_in, params, sanitize=False)
|
| 361 |
+
if self._metal_disconnect:
|
| 362 |
+
mol_in = self.metal_disconnector.Disconnect(mol_in)
|
| 363 |
+
normalized = self.normalizer.normalize(mol_in)
|
| 364 |
+
Chem.SanitizeMol(normalized)
|
| 365 |
+
normalized = self.reionizer.reionize(normalized)
|
| 366 |
+
Chem.AssignStereochemistry(normalized)
|
| 367 |
+
normalized = self.lfrag_chooser.choose(normalized)
|
| 368 |
+
normalized = self.uncharger.uncharge(normalized)
|
| 369 |
+
# need this to reassess aromaticity on things like
|
| 370 |
+
# cyclopentadienyl, tropylium, azolium, etc.
|
| 371 |
+
Chem.SanitizeMol(normalized)
|
| 372 |
+
return Chem.RemoveHs(Chem.AddHs(normalized))
|
| 373 |
+
|
| 374 |
+
def standardize_mol(self, mol_in):
|
| 375 |
+
"""
|
| 376 |
+
Standardize a single molecule.
|
| 377 |
+
:param mol_in: a Chem.Mol
|
| 378 |
+
:return: * (standardized Chem.Mol, n_taut) tuple
|
| 379 |
+
if success. n_taut will be negative if
|
| 380 |
+
tautomer enumeration was aborted due
|
| 381 |
+
to reaching a limit
|
| 382 |
+
* (None, error_msg) if failure
|
| 383 |
+
This calls self.charge_parent() and, if self._canon_taut
|
| 384 |
+
is True, runs tautomer canonicalization.
|
| 385 |
+
"""
|
| 386 |
+
n_tautomers = 0
|
| 387 |
+
if isinstance(mol_in, Chem.Mol):
|
| 388 |
+
name = None
|
| 389 |
+
try:
|
| 390 |
+
name = mol_in.GetProp("_Name")
|
| 391 |
+
except KeyError:
|
| 392 |
+
pass
|
| 393 |
+
if not name:
|
| 394 |
+
name = "NONAME"
|
| 395 |
+
else:
|
| 396 |
+
error = f"Expected SMILES or Chem.Mol as input, got {str(type(mol_in))}"
|
| 397 |
+
return None, error
|
| 398 |
+
try:
|
| 399 |
+
mol_out = self.charge_parent(mol_in)
|
| 400 |
+
except Exception as e:
|
| 401 |
+
error = f"charge_parent FAILED: {str(e).strip()}"
|
| 402 |
+
return None, error
|
| 403 |
+
if self._canon_taut:
|
| 404 |
+
try:
|
| 405 |
+
res = self.taut_enumerator.Enumerate(mol_out, False)
|
| 406 |
+
except TypeError:
|
| 407 |
+
# we are still on the pre-2021 RDKit API
|
| 408 |
+
res = self.taut_enumerator.Enumerate(mol_out)
|
| 409 |
+
except Exception as e:
|
| 410 |
+
# something else went wrong
|
| 411 |
+
error = f"canon_taut FAILED: {str(e).strip()}"
|
| 412 |
+
return None, error
|
| 413 |
+
n_tautomers = len(res)
|
| 414 |
+
if hasattr(res, "status"):
|
| 415 |
+
completed = (
|
| 416 |
+
res.status == rdMolStandardize.TautomerEnumeratorStatus.Completed
|
| 417 |
+
)
|
| 418 |
+
else:
|
| 419 |
+
# we are still on the pre-2021 RDKit API
|
| 420 |
+
completed = len(res) < 1000
|
| 421 |
+
if not completed:
|
| 422 |
+
n_tautomers = -n_tautomers
|
| 423 |
+
try:
|
| 424 |
+
mol_out = self.taut_enumerator.PickCanonical(res)
|
| 425 |
+
except AttributeError:
|
| 426 |
+
# we are still on the pre-2021 RDKit API
|
| 427 |
+
mol_out = max(
|
| 428 |
+
[(self.taut_enumerator.ScoreTautomer(m), m) for m in res]
|
| 429 |
+
)[1]
|
| 430 |
+
except Exception as e:
|
| 431 |
+
# something else went wrong
|
| 432 |
+
error = f"canon_taut FAILED: {str(e).strip()}"
|
| 433 |
+
return None, error
|
| 434 |
+
mol_out.SetProp("_Name", name)
|
| 435 |
+
return mol_out, n_tautomers
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
class FeatureDictMixin:
|
| 439 |
+
"""
|
| 440 |
+
Mixin that enables bidirectional handling of dict-based multi-feature inputs.
|
| 441 |
+
Allows selective removal of columns directly from the combined array.
|
| 442 |
+
|
| 443 |
+
Example input:
|
| 444 |
+
{
|
| 445 |
+
"ecfps": np.ndarray,
|
| 446 |
+
"tox": np.ndarray,
|
| 447 |
+
}
|
| 448 |
+
"""
|
| 449 |
+
|
| 450 |
+
def __init__(self, feature_keys=None):
|
| 451 |
+
self.feature_keys = feature_keys
|
| 452 |
+
self._curr_keys = None
|
| 453 |
+
self._unused_data = None
|
| 454 |
+
|
| 455 |
+
def dict_to_array(self, input: dict[Any, np.ndarray]) -> np.ndarray:
|
| 456 |
+
"""Parse dict input and concatenate into a single array."""
|
| 457 |
+
if not isinstance(input, dict):
|
| 458 |
+
raise TypeError("Input must be a dict {feature_type: np.ndarray, ...}")
|
| 459 |
+
|
| 460 |
+
self._unused_data = {}
|
| 461 |
+
remaining_input = {}
|
| 462 |
+
for key in list(input.keys()):
|
| 463 |
+
if key not in self.feature_keys:
|
| 464 |
+
self._unused_data[key] = input[key]
|
| 465 |
+
else:
|
| 466 |
+
remaining_input[key] = input[key]
|
| 467 |
+
|
| 468 |
+
curr_keys = []
|
| 469 |
+
output = []
|
| 470 |
+
for key in self.feature_keys:
|
| 471 |
+
array = remaining_input.pop(key)
|
| 472 |
+
if array.ndim != 2:
|
| 473 |
+
raise ValueError(f"Feature '{key}' must be 2D, got shape {array.shape}")
|
| 474 |
+
|
| 475 |
+
curr_keys.extend([key] * array.shape[1])
|
| 476 |
+
output.append(array)
|
| 477 |
+
|
| 478 |
+
self._curr_keys = np.array(curr_keys)
|
| 479 |
+
|
| 480 |
+
return np.concatenate(output, axis=1)
|
| 481 |
+
|
| 482 |
+
def array_to_dict(self, input: np.ndarray) -> dict[Any, np.ndarray]:
|
| 483 |
+
"""Reconstruct dict from a concatenated array."""
|
| 484 |
+
if self._curr_keys is None:
|
| 485 |
+
raise ValueError("No feature mapping stored. Did you call parse_input()?")
|
| 486 |
+
|
| 487 |
+
output = {key: input[:, self._curr_keys == key] for key in self.feature_keys}
|
| 488 |
+
output.update(self._unused_data)
|
| 489 |
+
|
| 490 |
+
self._curr_keys = None
|
| 491 |
+
self._unused_data = None
|
| 492 |
+
return output
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def load_pickle(path: str):
|
| 496 |
+
with open(path, "rb") as file:
|
| 497 |
+
content = pickle.load(file)
|
| 498 |
+
return content
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
def write_pickle(path: str, obj: object):
|
| 502 |
+
with open(path, "wb") as file:
|
| 503 |
+
pickle.dump(obj, file)
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def create_dir(path, is_file=False):
|
| 507 |
+
"""Creates the parent directories if a path to a file is given, else create the given directory"""
|
| 508 |
+
|
| 509 |
+
to_create = os.path.dirname(path) if is_file else path
|
| 510 |
+
if not os.path.exists(to_create):
|
| 511 |
+
os.makedirs(to_create)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def normalize_config(config: dict):
|
| 515 |
+
"""Normalizes a json config recursively by applying a mapping"""
|
| 516 |
+
mapping = {"none": None, "true": True, "false": False}
|
| 517 |
+
new_config = {}
|
| 518 |
+
for key, val in config.items():
|
| 519 |
+
if isinstance(val, dict):
|
| 520 |
+
new_config[key] = normalize_config(val)
|
| 521 |
+
elif isinstance(val, (int, float, str)) and val in mapping:
|
| 522 |
+
new_config[key] = mapping[val]
|
| 523 |
+
else:
|
| 524 |
+
new_config[key] = val
|
| 525 |
+
return new_config
|