Spaces:
Runtime error
Runtime error
Update webgui.py
Browse files
webgui.py
CHANGED
|
@@ -29,6 +29,11 @@ import gradio as gr
|
|
| 29 |
|
| 30 |
import huggingface_hub
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
huggingface_hub.snapshot_download(
|
| 33 |
repo_id='BadToBest/EchoMimic',
|
| 34 |
local_dir='./pretrained_weights',
|
|
@@ -151,13 +156,71 @@ def select_face(det_bboxes, probs):
|
|
| 151 |
return sorted_bboxes[0]
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
#### face musk prepare
|
| 162 |
face_img = cv2.imread(uploaded_img)
|
| 163 |
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
|
|
@@ -182,9 +245,40 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, seed, fac
|
|
| 182 |
face_img = cv2.resize(face_img, (width, height))
|
| 183 |
face_mask = cv2.resize(face_mask, (width, height))
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
video = pipe(
|
| 189 |
ref_image_pil,
|
| 190 |
uploaded_audio,
|
|
@@ -194,7 +288,7 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, seed, fac
|
|
| 194 |
length,
|
| 195 |
steps,
|
| 196 |
cfg,
|
| 197 |
-
generator=generator,
|
| 198 |
audio_sample_rate=sample_rate,
|
| 199 |
context_frames=context_frames,
|
| 200 |
fps=fps,
|
|
@@ -290,7 +384,18 @@ with gr.Blocks() as demo:
|
|
| 290 |
</div>
|
| 291 |
""")
|
| 292 |
|
| 293 |
-
def generate_video(uploaded_img, uploaded_audio,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
final_output_path = process_video(
|
| 296 |
uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
|
|
@@ -303,19 +408,19 @@ with gr.Blocks() as demo:
|
|
| 303 |
inputs=[
|
| 304 |
uploaded_img,
|
| 305 |
uploaded_audio,
|
| 306 |
-
width,
|
| 307 |
-
height,
|
| 308 |
-
length,
|
| 309 |
-
seed,
|
| 310 |
-
facemask_dilation_ratio,
|
| 311 |
-
facecrop_dilation_ratio,
|
| 312 |
-
context_frames,
|
| 313 |
-
context_overlap,
|
| 314 |
-
cfg,
|
| 315 |
-
steps,
|
| 316 |
-
sample_rate,
|
| 317 |
-
fps,
|
| 318 |
-
device
|
| 319 |
],
|
| 320 |
outputs=output_video,
|
| 321 |
show_api=False
|
|
@@ -329,4 +434,4 @@ args = parser.parse_args()
|
|
| 329 |
|
| 330 |
if __name__ == '__main__':
|
| 331 |
demo.queue(max_size=3).launch(show_api=False, show_error=True)
|
| 332 |
-
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
|
|
|
|
| 29 |
|
| 30 |
import huggingface_hub
|
| 31 |
|
| 32 |
+
import pickle
|
| 33 |
+
from src.utils.draw_utils import FaceMeshVisualizer
|
| 34 |
+
from src.utils.motion_utils import motion_sync
|
| 35 |
+
from src.utils.mp_utils import LMKExtractor
|
| 36 |
+
|
| 37 |
huggingface_hub.snapshot_download(
|
| 38 |
repo_id='BadToBest/EchoMimic',
|
| 39 |
local_dir='./pretrained_weights',
|
|
|
|
| 156 |
return sorted_bboxes[0]
|
| 157 |
|
| 158 |
@spaces.GPU
|
| 159 |
+
lmk_extractor = LMKExtractor()
|
| 160 |
+
# def process_video(uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
|
| 161 |
+
|
| 162 |
+
# if seed is not None and seed > -1:
|
| 163 |
+
# generator = torch.manual_seed(seed)
|
| 164 |
+
# else:
|
| 165 |
+
# generator = torch.manual_seed(random.randint(100, 1000000))
|
| 166 |
+
|
| 167 |
+
# #### face musk prepare
|
| 168 |
+
# face_img = cv2.imread(uploaded_img)
|
| 169 |
+
# face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
|
| 170 |
+
# det_bboxes, probs = face_detector.detect(face_img)
|
| 171 |
+
# select_bbox = select_face(det_bboxes, probs)
|
| 172 |
+
# if select_bbox is None:
|
| 173 |
+
# face_mask[:, :] = 255
|
| 174 |
+
# else:
|
| 175 |
+
# xyxy = select_bbox[:4]
|
| 176 |
+
# xyxy = np.round(xyxy).astype('int')
|
| 177 |
+
# rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
|
| 178 |
+
# r_pad = int((re - rb) * facemask_dilation_ratio)
|
| 179 |
+
# c_pad = int((ce - cb) * facemask_dilation_ratio)
|
| 180 |
+
# face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
|
| 181 |
+
|
| 182 |
+
# #### face crop
|
| 183 |
+
# r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
|
| 184 |
+
# c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
|
| 185 |
+
# crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
|
| 186 |
+
# face_img = crop_and_pad(face_img, crop_rect)
|
| 187 |
+
# face_mask = crop_and_pad(face_mask, crop_rect)
|
| 188 |
+
# face_img = cv2.resize(face_img, (width, height))
|
| 189 |
+
# face_mask = cv2.resize(face_mask, (width, height))
|
| 190 |
+
|
| 191 |
+
# ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
|
| 192 |
+
# face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
| 193 |
+
|
| 194 |
+
# video = pipe(
|
| 195 |
+
# ref_image_pil,
|
| 196 |
+
# uploaded_audio,
|
| 197 |
+
# face_mask_tensor,
|
| 198 |
+
# width,
|
| 199 |
+
# height,
|
| 200 |
+
# length,
|
| 201 |
+
# steps,
|
| 202 |
+
# cfg,
|
| 203 |
+
# generator=generator,
|
| 204 |
+
# audio_sample_rate=sample_rate,
|
| 205 |
+
# context_frames=context_frames,
|
| 206 |
+
# fps=fps,
|
| 207 |
+
# context_overlap=context_overlap
|
| 208 |
+
# ).videos
|
| 209 |
+
|
| 210 |
+
# save_dir = Path("output/tmp")
|
| 211 |
+
# save_dir.mkdir(exist_ok=True, parents=True)
|
| 212 |
+
# output_video_path = save_dir / "output_video.mp4"
|
| 213 |
+
# save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
|
| 214 |
+
|
| 215 |
+
# video_clip = VideoFileClip(str(output_video_path))
|
| 216 |
+
# audio_clip = AudioFileClip(uploaded_audio)
|
| 217 |
+
# final_output_path = save_dir / "output_video_with_audio.mp4"
|
| 218 |
+
# video_clip = video_clip.set_audio(audio_clip)
|
| 219 |
+
# video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
|
| 220 |
+
|
| 221 |
+
# return final_output_path
|
| 222 |
+
|
| 223 |
+
def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
|
| 224 |
#### face musk prepare
|
| 225 |
face_img = cv2.imread(uploaded_img)
|
| 226 |
face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
|
|
|
|
| 245 |
face_img = cv2.resize(face_img, (width, height))
|
| 246 |
face_mask = cv2.resize(face_mask, (width, height))
|
| 247 |
|
| 248 |
+
|
| 249 |
+
# ==================== face_locator =====================
|
| 250 |
+
'''
|
| 251 |
+
driver_video = "./assets/driven_videos/c.mp4"
|
| 252 |
+
|
| 253 |
+
input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), (512, 512)) for i in pils_from_video(driver_video)]
|
| 254 |
+
ref_det = lmk_extractor(face_img)
|
| 255 |
+
|
| 256 |
+
visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
|
| 257 |
+
|
| 258 |
+
pose_list = []
|
| 259 |
+
sequence_driver_det = []
|
| 260 |
+
try:
|
| 261 |
+
for frame in input_frames_cv2:
|
| 262 |
+
result = lmk_extractor(frame)
|
| 263 |
+
assert result is not None, "{}, bad video, face not detected".format(driver_video)
|
| 264 |
+
sequence_driver_det.append(result)
|
| 265 |
+
except:
|
| 266 |
+
print("face detection failed")
|
| 267 |
+
exit()
|
| 268 |
+
|
| 269 |
+
sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
|
| 270 |
+
for p in sequence_det_ms:
|
| 271 |
+
tgt_musk = visualizer.draw_landmarks((width, height), p)
|
| 272 |
+
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
|
| 273 |
+
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
|
| 274 |
+
'''
|
| 275 |
+
# face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
|
| 276 |
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
| 277 |
|
| 278 |
+
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
|
| 279 |
+
|
| 280 |
+
#del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2
|
| 281 |
+
|
| 282 |
video = pipe(
|
| 283 |
ref_image_pil,
|
| 284 |
uploaded_audio,
|
|
|
|
| 288 |
length,
|
| 289 |
steps,
|
| 290 |
cfg,
|
| 291 |
+
#generator=generator,
|
| 292 |
audio_sample_rate=sample_rate,
|
| 293 |
context_frames=context_frames,
|
| 294 |
fps=fps,
|
|
|
|
| 384 |
</div>
|
| 385 |
""")
|
| 386 |
|
| 387 |
+
def generate_video(uploaded_img, uploaded_audio, facemask_dilation_ratio=default_values["facemask_dilation_ratio"],
|
| 388 |
+
facecrop_dilation_ratio=default_values["facecrop_dilation_ratio"],
|
| 389 |
+
context_frames=default_values["context_frames"],
|
| 390 |
+
context_overlap=default_values["context_overlap"],
|
| 391 |
+
cfg=default_values["cfg"],
|
| 392 |
+
steps=default_values["steps"],
|
| 393 |
+
sample_rate=default_values["sample_rate"],
|
| 394 |
+
fps=default_values["fps"],
|
| 395 |
+
device=default_values["device"],
|
| 396 |
+
width=default_values["width"],
|
| 397 |
+
height=default_values["height"],
|
| 398 |
+
length=default_values["length"] ):
|
| 399 |
|
| 400 |
final_output_path = process_video(
|
| 401 |
uploaded_img, uploaded_audio, width, height, length, seed, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device
|
|
|
|
| 408 |
inputs=[
|
| 409 |
uploaded_img,
|
| 410 |
uploaded_audio,
|
| 411 |
+
# width,
|
| 412 |
+
# height,
|
| 413 |
+
# length,
|
| 414 |
+
# seed,
|
| 415 |
+
# facemask_dilation_ratio,
|
| 416 |
+
# facecrop_dilation_ratio,
|
| 417 |
+
# context_frames,
|
| 418 |
+
# context_overlap,
|
| 419 |
+
# cfg,
|
| 420 |
+
# steps,
|
| 421 |
+
# sample_rate,
|
| 422 |
+
# fps,
|
| 423 |
+
# device
|
| 424 |
],
|
| 425 |
outputs=output_video,
|
| 426 |
show_api=False
|
|
|
|
| 434 |
|
| 435 |
if __name__ == '__main__':
|
| 436 |
demo.queue(max_size=3).launch(show_api=False, show_error=True)
|
| 437 |
+
#demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
|