File size: 7,111 Bytes
bfecffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ed752e
 
 
bfecffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
import subprocess
import argparse
from pathlib import Path
import torch
import datetime
import numpy as np
from PIL import Image
import imageio
import spaces

# --- Part 1: Auto-Setup (Clone Repo & Download Weights) ---

REPO_URL = "https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.git"
REPO_DIR = "HunyuanVideo-1.5"
MODEL_DIR = "ckpts"
HF_REPO_ID = "tencent/HunyuanVideo"

# Configuration
TRANSFORMER_VERSION = "480p_i2v_distilled"
DTYPE = torch.bfloat16
# Set to False if you have >40GB VRAM and want everything on GPU constantly.
# Set to True (Default) to allow running on 16GB-24GB cards via CPU offloading.
ENABLE_OFFLOADING = True 

def setup_environment():
    """Clones the repo and downloads weights if they don't exist."""
    print("=" * 50)
    print("Checking Environment & Dependencies...")
    
    # 1. Clone Repository
    if not os.path.exists(REPO_DIR):
        print(f"Cloning repository from {REPO_URL}...")
        subprocess.run(["git", "clone", REPO_URL], check=True)
    else:
        print(f"Repository {REPO_DIR} exists.")

    # 2. Add Repo to Python Path
    repo_path = os.path.abspath(REPO_DIR)
    if repo_path not in sys.path:
        sys.path.insert(0, repo_path)

    # 3. Download Weights
    if not os.path.exists(MODEL_DIR) or not os.listdir(MODEL_DIR):
        print(f"Downloading weights from {HF_REPO_ID} to {MODEL_DIR}...")
        try:
            from huggingface_hub import snapshot_download
            allow_patterns = [
                f"transformer/{TRANSFORMER_VERSION}/*",
                "vae/*",
                "text_encoder/*",
                "vision_encoder/*",
                "scheduler/*",
                "tokenizer/*"
            ]
            snapshot_download(repo_id=HF_REPO_ID, local_dir=MODEL_DIR, allow_patterns=allow_patterns)
            print("Download complete.")
        except Exception as e:
            print(f"Error downloading weights: {e}")
            sys.exit(1)
    print("Environment Ready.")
    print("=" * 50)

# Run setup immediately
setup_environment()

# --- Part 2: Imports from Cloned Repo ---

# Set Env Vars for HyVideo
if 'PYTORCH_CUDA_ALLOC_CONF' not in os.environ:
    os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
os.environ['RANK'] = '0'
os.environ['WORLD_SIZE'] = '1'

try:
    from hyvideo.pipelines.hunyuan_video_pipeline import HunyuanVideo_1_5_Pipeline
    from hyvideo.commons.parallel_states import initialize_parallel_state
    from hyvideo.commons.infer_state import initialize_infer_state
except ImportError as e:
    print(f"CRITICAL ERROR: Could not import hyvideo modules. {e}")
    sys.exit(1)

import gradio as gr

# --- Part 3: Model Initialization (Pre-Load) ---

# Initialize Distributed/Infer States
#parallel_dims = initialize_parallel_state(sp=1)
#if torch.cuda.is_available():
#    torch.cuda.set_device(0)

class ArgsNamespace:
    def __init__(self):
        self.use_sageattn = False
        self.sage_blocks_range = "0-53"
        self.enable_torch_compile = False

initialize_infer_state(ArgsNamespace())

# Global Pipeline Variable
pipe = None

def pre_load_model():
    """Loads the model into memory/GPU before UI launch."""
    global pipe
    print(f"⏳ Initializing Pipeline ({TRANSFORMER_VERSION})... this may take a moment...")
    
    try:
        pipe = HunyuanVideo_1_5_Pipeline.create_pipeline(
            pretrained_model_name_or_path=MODEL_DIR,
            transformer_version=TRANSFORMER_VERSION,
            enable_offloading=ENABLE_OFFLOADING,
            enable_group_offloading=ENABLE_OFFLOADING,
            transformer_dtype=DTYPE,
        )
        print("✅ Model loaded successfully!")
        if not ENABLE_OFFLOADING:
            print("   Model is fully resident on GPU.")
        else:
            print("   Model loaded with CPU Offloading enabled (optimizes VRAM usage).")
    except Exception as e:
        print(f"❌ Failed to load model: {e}")
        sys.exit(1)

def save_video_tensor(video_tensor, path, fps=24):
    if isinstance(video_tensor, list): video_tensor = video_tensor[0]
    if video_tensor.ndim == 5: video_tensor = video_tensor[0]
    vid = (video_tensor * 255).clamp(0, 255).to(torch.uint8)
    vid = vid.permute(1, 2, 3, 0).cpu().numpy()
    imageio.mimwrite(path, vid, fps=fps)

@spaces.GPU(duration=120)
def generate(input_image, prompt, length, steps, shift, seed, guidance):
    if pipe is None:
        raise gr.Error("Pipeline not initialized!")
    
    if input_image is None:
        raise gr.Error("Reference image required.")

    if isinstance(input_image, np.ndarray):
        input_image = Image.fromarray(input_image).convert("RGB")

    if seed == -1: seed = torch.randint(0, 1000000, (1,)).item()
    generator = torch.Generator(device="cpu").manual_seed(int(seed))

    print(f"Generating: {prompt} | Seed: {seed}")

    try:
        output = pipe(
            prompt=prompt,
            height=480, width=854, aspect_ratio="16:9",
            video_length=int(length),
            num_inference_steps=int(steps),
            guidance_scale=float(guidance),
            flow_shift=float(shift),
            reference_image=input_image,
            seed=int(seed),
            generator=generator,
            output_type="pt",
            enable_sr=False,
            return_dict=True
        )
    except Exception as e:
        raise gr.Error(f"Inference Failed: {e}")

    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    os.makedirs("outputs", exist_ok=True)
    output_path = f"outputs/gen_{timestamp}.mp4"
    save_video_tensor(output.videos, output_path)
    
    return output_path

# --- Part 4: UI Definition & Launch ---

def create_ui():
    with gr.Blocks(title="HunyuanVideo 1.5 I2V") as demo:
        gr.Markdown(f"### 🎬 HunyuanVideo 1.5 I2V ({TRANSFORMER_VERSION})")
        gr.Markdown("Model is pre-loaded. Ready to generate.")
        
        with gr.Row():
            with gr.Column():
                img = gr.Image(label="Reference", type="pil", height=250)
                prompt = gr.Textbox(label="Prompt", placeholder="Describe motion...", lines=2)
                with gr.Row():
                    steps = gr.Slider(2, 20, value=6, step=1, label="Steps")
                    guidance = gr.Slider(1.0, 5.0, value=1.0, step=0.1, label="Guidance")
                with gr.Row():
                    shift = gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="Shift")
                    length = gr.Slider(1, 129, value=61, step=4, label="Length")
                    seed = gr.Number(value=-1, label="Seed", precision=0)
                btn = gr.Button("Generate", variant="primary")
            
            with gr.Column():
                out = gr.Video(label="Result", autoplay=True)
        
        btn.click(generate, inputs=[img, prompt, length, steps, shift, seed, guidance], outputs=[out])
    return demo

if __name__ == "__main__":
    # 1. Execute the pre-load BEFORE the UI launches
    pre_load_model()
    
    # 2. Launch UI
    ui = create_ui()
    ui.queue().launch(server_name="0.0.0.0", share=True)