File size: 9,973 Bytes
bfecffd
 
 
 
 
 
 
 
939c549
bfecffd
 
 
 
f200a98
939c549
 
 
 
 
bfecffd
 
 
 
939c549
 
bfecffd
 
 
 
 
939c549
bfecffd
f200a98
 
bfecffd
 
f200a98
 
bfecffd
939c549
 
 
 
 
 
bfecffd
 
 
 
 
 
 
 
 
 
f200a98
939c549
f200a98
939c549
 
f200a98
bfecffd
939c549
bfecffd
939c549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfecffd
 
 
 
 
939c549
bfecffd
939c549
bfecffd
ecc3183
 
939c549
 
 
bfecffd
ecc3183
bfecffd
 
 
 
939c549
 
340434e
939c549
340434e
939c549
340434e
 
 
939c549
bfecffd
 
 
 
 
 
 
 
 
 
 
939c549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfecffd
 
 
 
 
 
 
 
939c549
 
bfecffd
 
 
 
 
 
 
 
 
 
 
 
 
 
939c549
 
bfecffd
939c549
 
 
 
 
e855781
939c549
 
bfecffd
 
 
 
 
 
 
 
 
 
 
 
 
 
939c549
 
 
 
bfecffd
939c549
 
 
bfecffd
 
 
 
 
 
 
 
939c549
bfecffd
 
 
 
939c549
bfecffd
 
 
 
 
 
939c549
bfecffd
 
 
 
 
 
 
 
 
 
 
 
 
 
939c549
bfecffd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import sys
import subprocess
import torch
import datetime
import numpy as np
from PIL import Image
import imageio
import shutil

# --- Part 1: Auto-Setup (Clone Repo & Download Weights) ---

REPO_URL = "https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.git"
REPO_DIR = os.path.abspath("HunyuanVideo-1.5")
MODEL_DIR = os.path.abspath("ckpts")

# Repositories
HF_MAIN_REPO = "tencent/HunyuanVideo-1.5"
HF_GLYPH_REPO = "multimodalart/glyph-sdxl-v2-byt5-small"

# Configuration
TRANSFORMER_VERSION = "480p_i2v_distilled"
DTYPE = torch.bfloat16
# ZeroGPU: Set False so we control offloading manually (CPU -> GPU -> CPU)
ENABLE_OFFLOADING = False 

def setup_environment():
    print("=" * 50)
    print("Checking Environment & Dependencies...")
    
    # 1. Clone Code Repository
    if not os.path.exists(REPO_DIR):
        print(f"Cloning repository to {REPO_DIR}...")
        subprocess.run(["git", "clone", REPO_URL, REPO_DIR], check=True)

    # 2. Add Repo to Python Path
    if REPO_DIR not in sys.path:
        sys.path.insert(0, REPO_DIR)

    # 3. Download Main Weights
    os.makedirs(MODEL_DIR, exist_ok=True)
    target_transformer = os.path.join(MODEL_DIR, "transformer", TRANSFORMER_VERSION)
    
    if not os.path.exists(target_transformer):
        print(f"Downloading Main Weights from {HF_MAIN_REPO}...")
        try:
            from huggingface_hub import snapshot_download
            allow_patterns = [
                f"transformer/{TRANSFORMER_VERSION}/*",
                "vae/*",
                "text_encoder/*",
                "vision_encoder/*",
                "scheduler/*",
                "tokenizer/*"
            ]
            snapshot_download(
                repo_id=HF_MAIN_REPO, 
                local_dir=MODEL_DIR, 
                allow_patterns=allow_patterns,
                local_dir_use_symlinks=False
            )
        except Exception as e:
            print(f"Error downloading main weights: {e}")
            sys.exit(1)

    # 4. Download & Restructure Glyph Weights
    # The pipeline expects: ckpts/text_encoder/Glyph-SDXL-v2/checkpoints/byt5_model.pt
    glyph_root = os.path.join(MODEL_DIR, "text_encoder", "Glyph-SDXL-v2")
    glyph_ckpt_target = os.path.join(glyph_root, "checkpoints", "byt5_model.pt")
    
    if not os.path.exists(glyph_ckpt_target):
        print(f"Downloading & Structuring Glyph Weights from {HF_GLYPH_REPO}...")
        try:
            from huggingface_hub import snapshot_download
            # Download to a temp folder first
            glyph_temp = os.path.join(MODEL_DIR, "glyph_temp")
            snapshot_download(
                repo_id=HF_GLYPH_REPO,
                local_dir=glyph_temp,
                local_dir_use_symlinks=False
            )
            
            # Create target structure
            os.makedirs(os.path.join(glyph_root, "assets"), exist_ok=True)
            os.makedirs(os.path.join(glyph_root, "checkpoints"), exist_ok=True)
            
            # Move Assets (color_idx.json, etc.)
            src_assets = os.path.join(glyph_temp, "assets")
            if os.path.exists(src_assets):
                for f in os.listdir(src_assets):
                    shutil.copy(os.path.join(src_assets, f), os.path.join(glyph_root, "assets", f))
            
            # Move & Rename Model (pytorch_model.bin -> byt5_model.pt)
            # Try bin first, then safetensors (code usually loads via torch.load, so bin/pt is safer)
            src_bin = os.path.join(glyph_temp, "pytorch_model.bin")
            if os.path.exists(src_bin):
                print(" moving pytorch_model.bin -> byt5_model.pt")
                shutil.move(src_bin, glyph_ckpt_target)
            else:
                # Fallback if repo changes structure
                print("Warning: pytorch_model.bin not found, looking for safetensors...")
                src_safe = os.path.join(glyph_temp, "model.safetensors")
                if os.path.exists(src_safe):
                     # Note: Standard torch.load might fail on safetensors if code expects pickle, 
                     # but let's try.
                     shutil.move(src_safe, glyph_ckpt_target)
            
            # Clean up temp
            shutil.rmtree(glyph_temp, ignore_errors=True)
            print("Glyph setup complete.")
            
        except Exception as e:
            print(f"Error setting up Glyph weights: {e}")
            # Don't exit, maybe the model can run without it if config tweaked, 
            # but likely it will fail later.
            pass

    print("Environment Ready.")
    print("=" * 50)

setup_environment()

# --- Part 2: Imports & Monkey Patching ---

# 1. Import Modules explicitly for patching
try:
    import hyvideo.commons
    import hyvideo.pipelines.hunyuan_video_pipeline
    from hyvideo.pipelines.hunyuan_video_pipeline import HunyuanVideo_1_5_Pipeline
    from hyvideo.commons.infer_state import initialize_infer_state
    import spaces
except ImportError as e:
    print(f"CRITICAL ERROR: {e}")
    sys.exit(1)

import gradio as gr

# 2. Apply ZeroGPU Monkey Patch
# We must patch the specific modules where get_gpu_memory is imported/used
def dummy_get_gpu_memory(device=None):
    return 80 * 1024 * 1024 * 1024 # Spoof 80GB

print("🛠️  Applying ZeroGPU Monkey Patch...")
hyvideo.commons.get_gpu_memory = dummy_get_gpu_memory
hyvideo.pipelines.hunyuan_video_pipeline.get_gpu_memory = dummy_get_gpu_memory

# --- Part 3: Model Initialization (CPU) ---

class ArgsNamespace:
    def __init__(self):
        self.use_sageattn = False
        self.sage_blocks_range = "0-53"
        self.enable_torch_compile = False

initialize_infer_state(ArgsNamespace())

pipe = None

def pre_load_model():
    global pipe
    print(f"⏳ Initializing Pipeline ({TRANSFORMER_VERSION})...")
    try:
        # Load to CPU explicitly
        pipe = HunyuanVideo_1_5_Pipeline.create_pipeline(
            pretrained_model_name_or_path=MODEL_DIR,
            transformer_version=TRANSFORMER_VERSION,
            enable_offloading=ENABLE_OFFLOADING,
            enable_group_offloading=ENABLE_OFFLOADING,
            transformer_dtype=DTYPE,
            device=torch.device('cpu')
        )
        print("✅ Model loaded into CPU RAM.")
    except Exception as e:
        print(f"❌ Failed to load model: {e}")
        import traceback
        traceback.print_exc()
        sys.exit(1)

def save_video_tensor(video_tensor, path, fps=24):
    if isinstance(video_tensor, list): video_tensor = video_tensor[0]
    if video_tensor.ndim == 5: video_tensor = video_tensor[0]
    vid = (video_tensor * 255).clamp(0, 255).to(torch.uint8)
    vid = vid.permute(1, 2, 3, 0).cpu().numpy()
    imageio.mimwrite(path, vid, fps=fps)

# --- Part 4: Inference ---

@spaces.GPU(duration=120)
def generate(input_image, prompt, length, steps, shift, seed, guidance):
    if pipe is None:
        raise gr.Error("Pipeline not initialized!")
    
    if input_image is None:
        raise gr.Error("Reference image required.")

    if isinstance(input_image, np.ndarray):
        input_image = Image.fromarray(input_image).convert("RGB")

    if seed == -1: seed = torch.randint(0, 1000000, (1,)).item()
    generator = torch.Generator(device="cpu").manual_seed(int(seed))

    print(f"🚀 Moving Pipeline to GPU... (Prompt: {prompt})")
    
    try:
        # 1. Move Weights
        pipe.to("cuda")
        
        # 2. FIX: Manually update internal device reference 
        # (Hunyuan uses this attribute instead of .device in some places)
        pipe.execution_device = torch.device("cuda")
        
        # 3. Run Inference
        output = pipe(
            prompt=prompt,
            height=480, width=854, aspect_ratio="16:9",
            video_length=int(length),
            num_inference_steps=int(steps),
            guidance_scale=float(guidance),
            flow_shift=float(shift),
            reference_image=input_image,
            seed=int(seed),
            generator=generator,
            output_type="pt",
            enable_sr=False,
            return_dict=True
        )
        
        # 4. Optional: Move back to CPU? 
        # pipe.to("cpu") 
        
    except Exception as e:
        print(f"Generation Error: {e}")
        import traceback
        traceback.print_exc()
        raise gr.Error(f"Inference Failed: {e}")

    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    os.makedirs("outputs", exist_ok=True)
    output_path = f"outputs/gen_{timestamp}.mp4"
    save_video_tensor(output.videos, output_path)
    return output_path

# --- Part 5: UI ---

def create_ui():
    with gr.Blocks(title="HunyuanVideo 1.5 I2V") as demo:
        gr.Markdown(f"### 🎬 HunyuanVideo 1.5 I2V ({TRANSFORMER_VERSION})")
        gr.Markdown("Running on ZeroGPU. Weights are pre-loaded on CPU.")
        
        with gr.Row():
            with gr.Column():
                img = gr.Image(label="Reference", type="pil", height=250)
                prompt = gr.Textbox(label="Prompt", placeholder="Describe motion...", lines=2)
                with gr.Row():
                    steps = gr.Slider(2, 50, value=6, step=1, label="Steps")
                    guidance = gr.Slider(1.0, 5.0, value=1.0, step=0.1, label="Guidance")
                with gr.Row():
                    shift = gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="Shift")
                    length = gr.Slider(1, 129, value=61, step=4, label="Length")
                    seed = gr.Number(value=-1, label="Seed", precision=0)
                btn = gr.Button("Generate", variant="primary")
            
            with gr.Column():
                out = gr.Video(label="Result", autoplay=True)
        
        btn.click(generate, inputs=[img, prompt, length, steps, shift, seed, guidance], outputs=[out])
    return demo

if __name__ == "__main__":
    pre_load_model()
    ui = create_ui()
    ui.queue().launch(server_name="0.0.0.0", share=True)