Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,973 Bytes
bfecffd 939c549 bfecffd f200a98 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd f200a98 bfecffd f200a98 bfecffd 939c549 bfecffd f200a98 939c549 f200a98 939c549 f200a98 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd ecc3183 939c549 bfecffd ecc3183 bfecffd 939c549 340434e 939c549 340434e 939c549 340434e 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 e855781 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd 939c549 bfecffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import sys
import subprocess
import torch
import datetime
import numpy as np
from PIL import Image
import imageio
import shutil
# --- Part 1: Auto-Setup (Clone Repo & Download Weights) ---
REPO_URL = "https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.git"
REPO_DIR = os.path.abspath("HunyuanVideo-1.5")
MODEL_DIR = os.path.abspath("ckpts")
# Repositories
HF_MAIN_REPO = "tencent/HunyuanVideo-1.5"
HF_GLYPH_REPO = "multimodalart/glyph-sdxl-v2-byt5-small"
# Configuration
TRANSFORMER_VERSION = "480p_i2v_distilled"
DTYPE = torch.bfloat16
# ZeroGPU: Set False so we control offloading manually (CPU -> GPU -> CPU)
ENABLE_OFFLOADING = False
def setup_environment():
print("=" * 50)
print("Checking Environment & Dependencies...")
# 1. Clone Code Repository
if not os.path.exists(REPO_DIR):
print(f"Cloning repository to {REPO_DIR}...")
subprocess.run(["git", "clone", REPO_URL, REPO_DIR], check=True)
# 2. Add Repo to Python Path
if REPO_DIR not in sys.path:
sys.path.insert(0, REPO_DIR)
# 3. Download Main Weights
os.makedirs(MODEL_DIR, exist_ok=True)
target_transformer = os.path.join(MODEL_DIR, "transformer", TRANSFORMER_VERSION)
if not os.path.exists(target_transformer):
print(f"Downloading Main Weights from {HF_MAIN_REPO}...")
try:
from huggingface_hub import snapshot_download
allow_patterns = [
f"transformer/{TRANSFORMER_VERSION}/*",
"vae/*",
"text_encoder/*",
"vision_encoder/*",
"scheduler/*",
"tokenizer/*"
]
snapshot_download(
repo_id=HF_MAIN_REPO,
local_dir=MODEL_DIR,
allow_patterns=allow_patterns,
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading main weights: {e}")
sys.exit(1)
# 4. Download & Restructure Glyph Weights
# The pipeline expects: ckpts/text_encoder/Glyph-SDXL-v2/checkpoints/byt5_model.pt
glyph_root = os.path.join(MODEL_DIR, "text_encoder", "Glyph-SDXL-v2")
glyph_ckpt_target = os.path.join(glyph_root, "checkpoints", "byt5_model.pt")
if not os.path.exists(glyph_ckpt_target):
print(f"Downloading & Structuring Glyph Weights from {HF_GLYPH_REPO}...")
try:
from huggingface_hub import snapshot_download
# Download to a temp folder first
glyph_temp = os.path.join(MODEL_DIR, "glyph_temp")
snapshot_download(
repo_id=HF_GLYPH_REPO,
local_dir=glyph_temp,
local_dir_use_symlinks=False
)
# Create target structure
os.makedirs(os.path.join(glyph_root, "assets"), exist_ok=True)
os.makedirs(os.path.join(glyph_root, "checkpoints"), exist_ok=True)
# Move Assets (color_idx.json, etc.)
src_assets = os.path.join(glyph_temp, "assets")
if os.path.exists(src_assets):
for f in os.listdir(src_assets):
shutil.copy(os.path.join(src_assets, f), os.path.join(glyph_root, "assets", f))
# Move & Rename Model (pytorch_model.bin -> byt5_model.pt)
# Try bin first, then safetensors (code usually loads via torch.load, so bin/pt is safer)
src_bin = os.path.join(glyph_temp, "pytorch_model.bin")
if os.path.exists(src_bin):
print(" moving pytorch_model.bin -> byt5_model.pt")
shutil.move(src_bin, glyph_ckpt_target)
else:
# Fallback if repo changes structure
print("Warning: pytorch_model.bin not found, looking for safetensors...")
src_safe = os.path.join(glyph_temp, "model.safetensors")
if os.path.exists(src_safe):
# Note: Standard torch.load might fail on safetensors if code expects pickle,
# but let's try.
shutil.move(src_safe, glyph_ckpt_target)
# Clean up temp
shutil.rmtree(glyph_temp, ignore_errors=True)
print("Glyph setup complete.")
except Exception as e:
print(f"Error setting up Glyph weights: {e}")
# Don't exit, maybe the model can run without it if config tweaked,
# but likely it will fail later.
pass
print("Environment Ready.")
print("=" * 50)
setup_environment()
# --- Part 2: Imports & Monkey Patching ---
# 1. Import Modules explicitly for patching
try:
import hyvideo.commons
import hyvideo.pipelines.hunyuan_video_pipeline
from hyvideo.pipelines.hunyuan_video_pipeline import HunyuanVideo_1_5_Pipeline
from hyvideo.commons.infer_state import initialize_infer_state
import spaces
except ImportError as e:
print(f"CRITICAL ERROR: {e}")
sys.exit(1)
import gradio as gr
# 2. Apply ZeroGPU Monkey Patch
# We must patch the specific modules where get_gpu_memory is imported/used
def dummy_get_gpu_memory(device=None):
return 80 * 1024 * 1024 * 1024 # Spoof 80GB
print("🛠️ Applying ZeroGPU Monkey Patch...")
hyvideo.commons.get_gpu_memory = dummy_get_gpu_memory
hyvideo.pipelines.hunyuan_video_pipeline.get_gpu_memory = dummy_get_gpu_memory
# --- Part 3: Model Initialization (CPU) ---
class ArgsNamespace:
def __init__(self):
self.use_sageattn = False
self.sage_blocks_range = "0-53"
self.enable_torch_compile = False
initialize_infer_state(ArgsNamespace())
pipe = None
def pre_load_model():
global pipe
print(f"⏳ Initializing Pipeline ({TRANSFORMER_VERSION})...")
try:
# Load to CPU explicitly
pipe = HunyuanVideo_1_5_Pipeline.create_pipeline(
pretrained_model_name_or_path=MODEL_DIR,
transformer_version=TRANSFORMER_VERSION,
enable_offloading=ENABLE_OFFLOADING,
enable_group_offloading=ENABLE_OFFLOADING,
transformer_dtype=DTYPE,
device=torch.device('cpu')
)
print("✅ Model loaded into CPU RAM.")
except Exception as e:
print(f"❌ Failed to load model: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
def save_video_tensor(video_tensor, path, fps=24):
if isinstance(video_tensor, list): video_tensor = video_tensor[0]
if video_tensor.ndim == 5: video_tensor = video_tensor[0]
vid = (video_tensor * 255).clamp(0, 255).to(torch.uint8)
vid = vid.permute(1, 2, 3, 0).cpu().numpy()
imageio.mimwrite(path, vid, fps=fps)
# --- Part 4: Inference ---
@spaces.GPU(duration=120)
def generate(input_image, prompt, length, steps, shift, seed, guidance):
if pipe is None:
raise gr.Error("Pipeline not initialized!")
if input_image is None:
raise gr.Error("Reference image required.")
if isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image).convert("RGB")
if seed == -1: seed = torch.randint(0, 1000000, (1,)).item()
generator = torch.Generator(device="cpu").manual_seed(int(seed))
print(f"🚀 Moving Pipeline to GPU... (Prompt: {prompt})")
try:
# 1. Move Weights
pipe.to("cuda")
# 2. FIX: Manually update internal device reference
# (Hunyuan uses this attribute instead of .device in some places)
pipe.execution_device = torch.device("cuda")
# 3. Run Inference
output = pipe(
prompt=prompt,
height=480, width=854, aspect_ratio="16:9",
video_length=int(length),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
flow_shift=float(shift),
reference_image=input_image,
seed=int(seed),
generator=generator,
output_type="pt",
enable_sr=False,
return_dict=True
)
# 4. Optional: Move back to CPU?
# pipe.to("cpu")
except Exception as e:
print(f"Generation Error: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"Inference Failed: {e}")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs("outputs", exist_ok=True)
output_path = f"outputs/gen_{timestamp}.mp4"
save_video_tensor(output.videos, output_path)
return output_path
# --- Part 5: UI ---
def create_ui():
with gr.Blocks(title="HunyuanVideo 1.5 I2V") as demo:
gr.Markdown(f"### 🎬 HunyuanVideo 1.5 I2V ({TRANSFORMER_VERSION})")
gr.Markdown("Running on ZeroGPU. Weights are pre-loaded on CPU.")
with gr.Row():
with gr.Column():
img = gr.Image(label="Reference", type="pil", height=250)
prompt = gr.Textbox(label="Prompt", placeholder="Describe motion...", lines=2)
with gr.Row():
steps = gr.Slider(2, 50, value=6, step=1, label="Steps")
guidance = gr.Slider(1.0, 5.0, value=1.0, step=0.1, label="Guidance")
with gr.Row():
shift = gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="Shift")
length = gr.Slider(1, 129, value=61, step=4, label="Length")
seed = gr.Number(value=-1, label="Seed", precision=0)
btn = gr.Button("Generate", variant="primary")
with gr.Column():
out = gr.Video(label="Result", autoplay=True)
btn.click(generate, inputs=[img, prompt, length, steps, shift, seed, guidance], outputs=[out])
return demo
if __name__ == "__main__":
pre_load_model()
ui = create_ui()
ui.queue().launch(server_name="0.0.0.0", share=True) |