Spaces:
Running
on
L4
Running
on
L4
| # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION is strictly prohibited. | |
| import os | |
| import click | |
| import re | |
| import json | |
| import tempfile | |
| import torch | |
| import dnnlib | |
| from training import training_loop | |
| from metrics import metric_main | |
| from torch_utils import training_stats | |
| from torch_utils import custom_ops | |
| #---------------------------------------------------------------------------- | |
| def subprocess_fn(rank, c, temp_dir): | |
| dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True) | |
| # Init torch.distributed. | |
| if c.num_gpus > 1: | |
| init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) | |
| if os.name == 'nt': | |
| init_method = 'file:///' + init_file.replace('\\', '/') | |
| torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus) | |
| else: | |
| init_method = f'file://{init_file}' | |
| torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus) | |
| # Init torch_utils. | |
| sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None | |
| training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) | |
| if rank != 0: | |
| custom_ops.verbosity = 'none' | |
| # Execute training loop. | |
| training_loop.training_loop(rank=rank, **c) | |
| #---------------------------------------------------------------------------- | |
| def launch_training(c, desc, outdir, dry_run): | |
| dnnlib.util.Logger(should_flush=True) | |
| # Pick output directory. | |
| prev_run_dirs = [] | |
| if os.path.isdir(outdir): | |
| prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))] | |
| prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] | |
| prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] | |
| cur_run_id = max(prev_run_ids, default=-1) + 1 | |
| c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}') | |
| assert not os.path.exists(c.run_dir) | |
| # Print options. | |
| print() | |
| print('Training options:') | |
| print(json.dumps(c, indent=2)) | |
| print() | |
| print(f'Output directory: {c.run_dir}') | |
| print(f'Number of GPUs: {c.num_gpus}') | |
| print(f'Batch size: {c.batch_size} images') | |
| print(f'Training duration: {c.total_kimg} kimg') | |
| print(f'Dataset path: {c.training_set_kwargs.path}') | |
| print(f'Dataset size: {c.training_set_kwargs.max_size} images') | |
| print(f'Dataset resolution: {c.training_set_kwargs.resolution}') | |
| print(f'Dataset labels: {c.training_set_kwargs.use_labels}') | |
| print(f'Dataset x-flips: {c.training_set_kwargs.xflip}') | |
| print() | |
| # Dry run? | |
| if dry_run: | |
| print('Dry run; exiting.') | |
| return | |
| # Create output directory. | |
| print('Creating output directory...') | |
| os.makedirs(c.run_dir) | |
| with open(os.path.join(c.run_dir, 'training_options.json'), 'wt') as f: | |
| json.dump(c, f, indent=2) | |
| # Launch processes. | |
| print('Launching processes...') | |
| torch.multiprocessing.set_start_method('spawn') | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| if c.num_gpus == 1: | |
| subprocess_fn(rank=0, c=c, temp_dir=temp_dir) | |
| else: | |
| torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus) | |
| #---------------------------------------------------------------------------- | |
| def init_dataset_kwargs(data): | |
| try: | |
| dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False) | |
| dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset. | |
| dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution. | |
| dataset_kwargs.use_labels = dataset_obj.has_labels # Be explicit about labels. | |
| dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size. | |
| return dataset_kwargs, dataset_obj.name | |
| except IOError as err: | |
| raise click.ClickException(f'--data: {err}') | |
| #---------------------------------------------------------------------------- | |
| def parse_comma_separated_list(s): | |
| if isinstance(s, list): | |
| return s | |
| if s is None or s.lower() == 'none' or s == '': | |
| return [] | |
| return s.split(',') | |
| #---------------------------------------------------------------------------- | |
| # Required. | |
| # Optional features. | |
| # Misc hyperparameters. | |
| # Misc settings. | |
| def main(**kwargs): | |
| # Initialize config. | |
| opts = dnnlib.EasyDict(kwargs) # Command line arguments. | |
| c = dnnlib.EasyDict() # Main config dict. | |
| c.G_kwargs = dnnlib.EasyDict(class_name='training.networks.Generator') | |
| c.D_kwargs = dnnlib.EasyDict(class_name='training.networks.Discriminator') | |
| c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8) | |
| c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0], eps=1e-8) | |
| c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.R3GANLoss') | |
| c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2) | |
| # Training set. | |
| c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data) | |
| if opts.cond and not c.training_set_kwargs.use_labels: | |
| raise click.ClickException('--cond=True requires labels specified in dataset.json') | |
| c.training_set_kwargs.use_labels = opts.cond | |
| c.training_set_kwargs.xflip = opts.mirror | |
| # Hyperparameters & settings. | |
| c.num_gpus = opts.gpus | |
| c.batch_size = opts.batch | |
| c.g_batch_gpu = opts.g_batch_gpu or opts.batch // opts.gpus | |
| c.d_batch_gpu = opts.d_batch_gpu or opts.batch // opts.gpus | |
| if opts.preset == 'CIFAR10': | |
| WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024]] | |
| BlocksPerStage = [2 * x for x in [1, 1, 1, 1]] | |
| CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]] | |
| FP16Stages = [-1, -2, -3] | |
| NoiseDimension = 64 | |
| c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension | |
| c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0] | |
| ema_nimg = 5000 * 1000 | |
| decay_nimg = 2e7 | |
| c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg } | |
| c.aug_scheduler = { 'base_value': 0, 'final_value': 0.55, 'total_nimg': decay_nimg } | |
| c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg } | |
| c.gamma_scheduler = { 'base_value': 0.05, 'final_value': 0.005, 'total_nimg': decay_nimg } | |
| c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg } | |
| if opts.preset == 'FFHQ-64': | |
| WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512]] | |
| BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]] | |
| CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16]] | |
| FP16Stages = [-1, -2, -3, -4] | |
| NoiseDimension = 64 | |
| ema_nimg = 500 * 1000 | |
| decay_nimg = 2e7 | |
| c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg } | |
| c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg } | |
| c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg } | |
| c.gamma_scheduler = { 'base_value': 2, 'final_value': 0.2, 'total_nimg': decay_nimg } | |
| c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg } | |
| if opts.preset == 'FFHQ-256': | |
| WidthPerStage = [3 * x // 4 for x in [1024, 1024, 1024, 1024, 512, 256, 128]] | |
| BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1, 1, 1]] | |
| CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 16, 8, 4]] | |
| FP16Stages = [-1, -2, -3, -4] | |
| NoiseDimension = 64 | |
| ema_nimg = 500 * 1000 | |
| decay_nimg = 2e7 | |
| c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg } | |
| c.aug_scheduler = { 'base_value': 0, 'final_value': 0.3, 'total_nimg': decay_nimg } | |
| c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg } | |
| c.gamma_scheduler = { 'base_value': 150, 'final_value': 15, 'total_nimg': decay_nimg } | |
| c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg } | |
| if opts.preset == 'ImageNet-32': | |
| WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024]] | |
| BlocksPerStage = [2 * x for x in [1, 1, 1, 1]] | |
| CardinalityPerStage = [3 * x for x in [32, 32, 32, 32]] | |
| FP16Stages = [-1, -2, -3] | |
| NoiseDimension = 64 | |
| c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension | |
| c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0] | |
| ema_nimg = 50000 * 1000 | |
| decay_nimg = 2e8 | |
| c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg } | |
| c.aug_scheduler = { 'base_value': 0, 'final_value': 0.5, 'total_nimg': decay_nimg } | |
| c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg } | |
| c.gamma_scheduler = { 'base_value': 0.5, 'final_value': 0.05, 'total_nimg': decay_nimg } | |
| c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg } | |
| if opts.preset == 'ImageNet-64': | |
| WidthPerStage = [6 * x // 4 for x in [1024, 1024, 1024, 1024, 1024]] | |
| BlocksPerStage = [2 * x for x in [1, 1, 1, 1, 1]] | |
| CardinalityPerStage = [3 * x for x in [32, 32, 32, 32, 32]] | |
| FP16Stages = [-1, -2, -3, -4] | |
| NoiseDimension = 64 | |
| c.G_kwargs.ConditionEmbeddingDimension = NoiseDimension | |
| c.D_kwargs.ConditionEmbeddingDimension = WidthPerStage[0] | |
| ema_nimg = 50000 * 1000 | |
| decay_nimg = 2e8 | |
| c.ema_scheduler = { 'base_value': 0, 'final_value': ema_nimg, 'total_nimg': decay_nimg } | |
| c.aug_scheduler = { 'base_value': 0, 'final_value': 0.4, 'total_nimg': decay_nimg } | |
| c.lr_scheduler = { 'base_value': 2e-4, 'final_value': 5e-5, 'total_nimg': decay_nimg } | |
| c.gamma_scheduler = { 'base_value': 1, 'final_value': 0.1, 'total_nimg': decay_nimg } | |
| c.beta2_scheduler = { 'base_value': 0.9, 'final_value': 0.99, 'total_nimg': decay_nimg } | |
| c.G_kwargs.NoiseDimension = NoiseDimension | |
| c.G_kwargs.WidthPerStage = WidthPerStage | |
| c.G_kwargs.CardinalityPerStage = CardinalityPerStage | |
| c.G_kwargs.BlocksPerStage = BlocksPerStage | |
| c.G_kwargs.ExpansionFactor = 2 | |
| c.G_kwargs.FP16Stages = FP16Stages | |
| c.D_kwargs.WidthPerStage = [*reversed(WidthPerStage)] | |
| c.D_kwargs.CardinalityPerStage = [*reversed(CardinalityPerStage)] | |
| c.D_kwargs.BlocksPerStage = [*reversed(BlocksPerStage)] | |
| c.D_kwargs.ExpansionFactor = 2 | |
| c.D_kwargs.FP16Stages = [x + len(FP16Stages) for x in FP16Stages] | |
| c.metrics = opts.metrics | |
| c.total_kimg = opts.kimg | |
| c.kimg_per_tick = opts.tick | |
| c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap | |
| c.random_seed = c.training_set_kwargs.random_seed = opts.seed | |
| c.data_loader_kwargs.num_workers = opts.workers | |
| # Sanity checks. | |
| if c.batch_size % c.num_gpus != 0: | |
| raise click.ClickException('--batch must be a multiple of --gpus') | |
| if c.batch_size % (c.num_gpus * c.g_batch_gpu) != 0 or c.batch_size % (c.num_gpus * c.d_batch_gpu) != 0: | |
| raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu') | |
| if any(not metric_main.is_valid_metric(metric) for metric in c.metrics): | |
| raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) | |
| # Augmentation. | |
| if opts.aug: | |
| c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=0.5, contrast=0.5, lumaflip=0.5, hue=0.5, saturation=0.5, cutout=1) | |
| # Resume. | |
| if opts.resume is not None: | |
| c.resume_pkl = opts.resume | |
| # Performance-related toggles. | |
| if opts.nobench: | |
| c.cudnn_benchmark = False | |
| # Description string. | |
| desc = f'{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}' | |
| if opts.desc is not None: | |
| desc += f'-{opts.desc}' | |
| # Launch. | |
| launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run) | |
| #---------------------------------------------------------------------------- | |
| if __name__ == "__main__": | |
| main() # pylint: disable=no-value-for-parameter | |
| #---------------------------------------------------------------------------- | |