Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
422da78
1
Parent(s):
ef21785
Delete main.py
Browse files
main.py
DELETED
|
@@ -1,943 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import datetime
|
| 3 |
-
import glob
|
| 4 |
-
import inspect
|
| 5 |
-
import os
|
| 6 |
-
import sys
|
| 7 |
-
from inspect import Parameter
|
| 8 |
-
from typing import Union
|
| 9 |
-
|
| 10 |
-
import numpy as np
|
| 11 |
-
import pytorch_lightning as pl
|
| 12 |
-
import torch
|
| 13 |
-
import torchvision
|
| 14 |
-
import wandb
|
| 15 |
-
from matplotlib import pyplot as plt
|
| 16 |
-
from natsort import natsorted
|
| 17 |
-
from omegaconf import OmegaConf
|
| 18 |
-
from packaging import version
|
| 19 |
-
from PIL import Image
|
| 20 |
-
from pytorch_lightning import seed_everything
|
| 21 |
-
from pytorch_lightning.callbacks import Callback
|
| 22 |
-
from pytorch_lightning.loggers import WandbLogger
|
| 23 |
-
from pytorch_lightning.trainer import Trainer
|
| 24 |
-
from pytorch_lightning.utilities import rank_zero_only
|
| 25 |
-
|
| 26 |
-
from sgm.util import exists, instantiate_from_config, isheatmap
|
| 27 |
-
|
| 28 |
-
MULTINODE_HACKS = True
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def default_trainer_args():
|
| 32 |
-
argspec = dict(inspect.signature(Trainer.__init__).parameters)
|
| 33 |
-
argspec.pop("self")
|
| 34 |
-
default_args = {
|
| 35 |
-
param: argspec[param].default
|
| 36 |
-
for param in argspec
|
| 37 |
-
if argspec[param] != Parameter.empty
|
| 38 |
-
}
|
| 39 |
-
return default_args
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def get_parser(**parser_kwargs):
|
| 43 |
-
def str2bool(v):
|
| 44 |
-
if isinstance(v, bool):
|
| 45 |
-
return v
|
| 46 |
-
if v.lower() in ("yes", "true", "t", "y", "1"):
|
| 47 |
-
return True
|
| 48 |
-
elif v.lower() in ("no", "false", "f", "n", "0"):
|
| 49 |
-
return False
|
| 50 |
-
else:
|
| 51 |
-
raise argparse.ArgumentTypeError("Boolean value expected.")
|
| 52 |
-
|
| 53 |
-
parser = argparse.ArgumentParser(**parser_kwargs)
|
| 54 |
-
parser.add_argument(
|
| 55 |
-
"-n",
|
| 56 |
-
"--name",
|
| 57 |
-
type=str,
|
| 58 |
-
const=True,
|
| 59 |
-
default="",
|
| 60 |
-
nargs="?",
|
| 61 |
-
help="postfix for logdir",
|
| 62 |
-
)
|
| 63 |
-
parser.add_argument(
|
| 64 |
-
"--no_date",
|
| 65 |
-
type=str2bool,
|
| 66 |
-
nargs="?",
|
| 67 |
-
const=True,
|
| 68 |
-
default=False,
|
| 69 |
-
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
|
| 70 |
-
)
|
| 71 |
-
parser.add_argument(
|
| 72 |
-
"-r",
|
| 73 |
-
"--resume",
|
| 74 |
-
type=str,
|
| 75 |
-
const=True,
|
| 76 |
-
default="",
|
| 77 |
-
nargs="?",
|
| 78 |
-
help="resume from logdir or checkpoint in logdir",
|
| 79 |
-
)
|
| 80 |
-
parser.add_argument(
|
| 81 |
-
"-b",
|
| 82 |
-
"--base",
|
| 83 |
-
nargs="*",
|
| 84 |
-
metavar="base_config.yaml",
|
| 85 |
-
help="paths to base configs. Loaded from left-to-right. "
|
| 86 |
-
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
|
| 87 |
-
default=list(),
|
| 88 |
-
)
|
| 89 |
-
parser.add_argument(
|
| 90 |
-
"-t",
|
| 91 |
-
"--train",
|
| 92 |
-
type=str2bool,
|
| 93 |
-
const=True,
|
| 94 |
-
default=True,
|
| 95 |
-
nargs="?",
|
| 96 |
-
help="train",
|
| 97 |
-
)
|
| 98 |
-
parser.add_argument(
|
| 99 |
-
"--no-test",
|
| 100 |
-
type=str2bool,
|
| 101 |
-
const=True,
|
| 102 |
-
default=False,
|
| 103 |
-
nargs="?",
|
| 104 |
-
help="disable test",
|
| 105 |
-
)
|
| 106 |
-
parser.add_argument(
|
| 107 |
-
"-p", "--project", help="name of new or path to existing project"
|
| 108 |
-
)
|
| 109 |
-
parser.add_argument(
|
| 110 |
-
"-d",
|
| 111 |
-
"--debug",
|
| 112 |
-
type=str2bool,
|
| 113 |
-
nargs="?",
|
| 114 |
-
const=True,
|
| 115 |
-
default=False,
|
| 116 |
-
help="enable post-mortem debugging",
|
| 117 |
-
)
|
| 118 |
-
parser.add_argument(
|
| 119 |
-
"-s",
|
| 120 |
-
"--seed",
|
| 121 |
-
type=int,
|
| 122 |
-
default=23,
|
| 123 |
-
help="seed for seed_everything",
|
| 124 |
-
)
|
| 125 |
-
parser.add_argument(
|
| 126 |
-
"-f",
|
| 127 |
-
"--postfix",
|
| 128 |
-
type=str,
|
| 129 |
-
default="",
|
| 130 |
-
help="post-postfix for default name",
|
| 131 |
-
)
|
| 132 |
-
parser.add_argument(
|
| 133 |
-
"--projectname",
|
| 134 |
-
type=str,
|
| 135 |
-
default="stablediffusion",
|
| 136 |
-
)
|
| 137 |
-
parser.add_argument(
|
| 138 |
-
"-l",
|
| 139 |
-
"--logdir",
|
| 140 |
-
type=str,
|
| 141 |
-
default="logs",
|
| 142 |
-
help="directory for logging dat shit",
|
| 143 |
-
)
|
| 144 |
-
parser.add_argument(
|
| 145 |
-
"--scale_lr",
|
| 146 |
-
type=str2bool,
|
| 147 |
-
nargs="?",
|
| 148 |
-
const=True,
|
| 149 |
-
default=False,
|
| 150 |
-
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
| 151 |
-
)
|
| 152 |
-
parser.add_argument(
|
| 153 |
-
"--legacy_naming",
|
| 154 |
-
type=str2bool,
|
| 155 |
-
nargs="?",
|
| 156 |
-
const=True,
|
| 157 |
-
default=False,
|
| 158 |
-
help="name run based on config file name if true, else by whole path",
|
| 159 |
-
)
|
| 160 |
-
parser.add_argument(
|
| 161 |
-
"--enable_tf32",
|
| 162 |
-
type=str2bool,
|
| 163 |
-
nargs="?",
|
| 164 |
-
const=True,
|
| 165 |
-
default=False,
|
| 166 |
-
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
|
| 167 |
-
)
|
| 168 |
-
parser.add_argument(
|
| 169 |
-
"--startup",
|
| 170 |
-
type=str,
|
| 171 |
-
default=None,
|
| 172 |
-
help="Startuptime from distributed script",
|
| 173 |
-
)
|
| 174 |
-
parser.add_argument(
|
| 175 |
-
"--wandb",
|
| 176 |
-
type=str2bool,
|
| 177 |
-
nargs="?",
|
| 178 |
-
const=True,
|
| 179 |
-
default=False, # TODO: later default to True
|
| 180 |
-
help="log to wandb",
|
| 181 |
-
)
|
| 182 |
-
parser.add_argument(
|
| 183 |
-
"--no_base_name",
|
| 184 |
-
type=str2bool,
|
| 185 |
-
nargs="?",
|
| 186 |
-
const=True,
|
| 187 |
-
default=False, # TODO: later default to True
|
| 188 |
-
help="log to wandb",
|
| 189 |
-
)
|
| 190 |
-
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
| 191 |
-
parser.add_argument(
|
| 192 |
-
"--resume_from_checkpoint",
|
| 193 |
-
type=str,
|
| 194 |
-
default=None,
|
| 195 |
-
help="single checkpoint file to resume from",
|
| 196 |
-
)
|
| 197 |
-
default_args = default_trainer_args()
|
| 198 |
-
for key in default_args:
|
| 199 |
-
parser.add_argument("--" + key, default=default_args[key])
|
| 200 |
-
return parser
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
def get_checkpoint_name(logdir):
|
| 204 |
-
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
|
| 205 |
-
ckpt = natsorted(glob.glob(ckpt))
|
| 206 |
-
print('available "last" checkpoints:')
|
| 207 |
-
print(ckpt)
|
| 208 |
-
if len(ckpt) > 1:
|
| 209 |
-
print("got most recent checkpoint")
|
| 210 |
-
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
|
| 211 |
-
print(f"Most recent ckpt is {ckpt}")
|
| 212 |
-
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
|
| 213 |
-
f.write(ckpt + "\n")
|
| 214 |
-
try:
|
| 215 |
-
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
|
| 216 |
-
except Exception as e:
|
| 217 |
-
print("version confusion but not bad")
|
| 218 |
-
print(e)
|
| 219 |
-
version = 1
|
| 220 |
-
# version = last_version + 1
|
| 221 |
-
else:
|
| 222 |
-
# in this case, we only have one "last.ckpt"
|
| 223 |
-
ckpt = ckpt[0]
|
| 224 |
-
version = 1
|
| 225 |
-
melk_ckpt_name = f"last-v{version}.ckpt"
|
| 226 |
-
print(f"Current melk ckpt name: {melk_ckpt_name}")
|
| 227 |
-
return ckpt, melk_ckpt_name
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
class SetupCallback(Callback):
|
| 231 |
-
def __init__(
|
| 232 |
-
self,
|
| 233 |
-
resume,
|
| 234 |
-
now,
|
| 235 |
-
logdir,
|
| 236 |
-
ckptdir,
|
| 237 |
-
cfgdir,
|
| 238 |
-
config,
|
| 239 |
-
lightning_config,
|
| 240 |
-
debug,
|
| 241 |
-
ckpt_name=None,
|
| 242 |
-
):
|
| 243 |
-
super().__init__()
|
| 244 |
-
self.resume = resume
|
| 245 |
-
self.now = now
|
| 246 |
-
self.logdir = logdir
|
| 247 |
-
self.ckptdir = ckptdir
|
| 248 |
-
self.cfgdir = cfgdir
|
| 249 |
-
self.config = config
|
| 250 |
-
self.lightning_config = lightning_config
|
| 251 |
-
self.debug = debug
|
| 252 |
-
self.ckpt_name = ckpt_name
|
| 253 |
-
|
| 254 |
-
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
|
| 255 |
-
if not self.debug and trainer.global_rank == 0:
|
| 256 |
-
print("Summoning checkpoint.")
|
| 257 |
-
if self.ckpt_name is None:
|
| 258 |
-
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
| 259 |
-
else:
|
| 260 |
-
ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
|
| 261 |
-
trainer.save_checkpoint(ckpt_path)
|
| 262 |
-
|
| 263 |
-
def on_fit_start(self, trainer, pl_module):
|
| 264 |
-
if trainer.global_rank == 0:
|
| 265 |
-
# Create logdirs and save configs
|
| 266 |
-
os.makedirs(self.logdir, exist_ok=True)
|
| 267 |
-
os.makedirs(self.ckptdir, exist_ok=True)
|
| 268 |
-
os.makedirs(self.cfgdir, exist_ok=True)
|
| 269 |
-
|
| 270 |
-
if "callbacks" in self.lightning_config:
|
| 271 |
-
if (
|
| 272 |
-
"metrics_over_trainsteps_checkpoint"
|
| 273 |
-
in self.lightning_config["callbacks"]
|
| 274 |
-
):
|
| 275 |
-
os.makedirs(
|
| 276 |
-
os.path.join(self.ckptdir, "trainstep_checkpoints"),
|
| 277 |
-
exist_ok=True,
|
| 278 |
-
)
|
| 279 |
-
print("Project config")
|
| 280 |
-
print(OmegaConf.to_yaml(self.config))
|
| 281 |
-
if MULTINODE_HACKS:
|
| 282 |
-
import time
|
| 283 |
-
|
| 284 |
-
time.sleep(5)
|
| 285 |
-
OmegaConf.save(
|
| 286 |
-
self.config,
|
| 287 |
-
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
print("Lightning config")
|
| 291 |
-
print(OmegaConf.to_yaml(self.lightning_config))
|
| 292 |
-
OmegaConf.save(
|
| 293 |
-
OmegaConf.create({"lightning": self.lightning_config}),
|
| 294 |
-
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
else:
|
| 298 |
-
# ModelCheckpoint callback created log directory --- remove it
|
| 299 |
-
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
|
| 300 |
-
dst, name = os.path.split(self.logdir)
|
| 301 |
-
dst = os.path.join(dst, "child_runs", name)
|
| 302 |
-
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
| 303 |
-
try:
|
| 304 |
-
os.rename(self.logdir, dst)
|
| 305 |
-
except FileNotFoundError:
|
| 306 |
-
pass
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
class ImageLogger(Callback):
|
| 310 |
-
def __init__(
|
| 311 |
-
self,
|
| 312 |
-
batch_frequency,
|
| 313 |
-
max_images,
|
| 314 |
-
clamp=True,
|
| 315 |
-
increase_log_steps=True,
|
| 316 |
-
rescale=True,
|
| 317 |
-
disabled=False,
|
| 318 |
-
log_on_batch_idx=False,
|
| 319 |
-
log_first_step=False,
|
| 320 |
-
log_images_kwargs=None,
|
| 321 |
-
log_before_first_step=False,
|
| 322 |
-
enable_autocast=True,
|
| 323 |
-
):
|
| 324 |
-
super().__init__()
|
| 325 |
-
self.enable_autocast = enable_autocast
|
| 326 |
-
self.rescale = rescale
|
| 327 |
-
self.batch_freq = batch_frequency
|
| 328 |
-
self.max_images = max_images
|
| 329 |
-
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
| 330 |
-
if not increase_log_steps:
|
| 331 |
-
self.log_steps = [self.batch_freq]
|
| 332 |
-
self.clamp = clamp
|
| 333 |
-
self.disabled = disabled
|
| 334 |
-
self.log_on_batch_idx = log_on_batch_idx
|
| 335 |
-
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
| 336 |
-
self.log_first_step = log_first_step
|
| 337 |
-
self.log_before_first_step = log_before_first_step
|
| 338 |
-
|
| 339 |
-
@rank_zero_only
|
| 340 |
-
def log_local(
|
| 341 |
-
self,
|
| 342 |
-
save_dir,
|
| 343 |
-
split,
|
| 344 |
-
images,
|
| 345 |
-
global_step,
|
| 346 |
-
current_epoch,
|
| 347 |
-
batch_idx,
|
| 348 |
-
pl_module: Union[None, pl.LightningModule] = None,
|
| 349 |
-
):
|
| 350 |
-
root = os.path.join(save_dir, "images", split)
|
| 351 |
-
for k in images:
|
| 352 |
-
if isheatmap(images[k]):
|
| 353 |
-
fig, ax = plt.subplots()
|
| 354 |
-
ax = ax.matshow(
|
| 355 |
-
images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
|
| 356 |
-
)
|
| 357 |
-
plt.colorbar(ax)
|
| 358 |
-
plt.axis("off")
|
| 359 |
-
|
| 360 |
-
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
| 361 |
-
k, global_step, current_epoch, batch_idx
|
| 362 |
-
)
|
| 363 |
-
os.makedirs(root, exist_ok=True)
|
| 364 |
-
path = os.path.join(root, filename)
|
| 365 |
-
plt.savefig(path)
|
| 366 |
-
plt.close()
|
| 367 |
-
# TODO: support wandb
|
| 368 |
-
else:
|
| 369 |
-
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
| 370 |
-
if self.rescale:
|
| 371 |
-
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 372 |
-
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
| 373 |
-
grid = grid.numpy()
|
| 374 |
-
grid = (grid * 255).astype(np.uint8)
|
| 375 |
-
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
| 376 |
-
k, global_step, current_epoch, batch_idx
|
| 377 |
-
)
|
| 378 |
-
path = os.path.join(root, filename)
|
| 379 |
-
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
| 380 |
-
img = Image.fromarray(grid)
|
| 381 |
-
img.save(path)
|
| 382 |
-
if exists(pl_module):
|
| 383 |
-
assert isinstance(
|
| 384 |
-
pl_module.logger, WandbLogger
|
| 385 |
-
), "logger_log_image only supports WandbLogger currently"
|
| 386 |
-
pl_module.logger.log_image(
|
| 387 |
-
key=f"{split}/{k}",
|
| 388 |
-
images=[
|
| 389 |
-
img,
|
| 390 |
-
],
|
| 391 |
-
step=pl_module.global_step,
|
| 392 |
-
)
|
| 393 |
-
|
| 394 |
-
@rank_zero_only
|
| 395 |
-
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
| 396 |
-
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
| 397 |
-
if (
|
| 398 |
-
self.check_frequency(check_idx)
|
| 399 |
-
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
|
| 400 |
-
and callable(pl_module.log_images)
|
| 401 |
-
and
|
| 402 |
-
# batch_idx > 5 and
|
| 403 |
-
self.max_images > 0
|
| 404 |
-
):
|
| 405 |
-
logger = type(pl_module.logger)
|
| 406 |
-
is_train = pl_module.training
|
| 407 |
-
if is_train:
|
| 408 |
-
pl_module.eval()
|
| 409 |
-
|
| 410 |
-
gpu_autocast_kwargs = {
|
| 411 |
-
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
|
| 412 |
-
"dtype": torch.get_autocast_gpu_dtype(),
|
| 413 |
-
"cache_enabled": torch.is_autocast_cache_enabled(),
|
| 414 |
-
}
|
| 415 |
-
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
|
| 416 |
-
images = pl_module.log_images(
|
| 417 |
-
batch, split=split, **self.log_images_kwargs
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
for k in images:
|
| 421 |
-
N = min(images[k].shape[0], self.max_images)
|
| 422 |
-
if not isheatmap(images[k]):
|
| 423 |
-
images[k] = images[k][:N]
|
| 424 |
-
if isinstance(images[k], torch.Tensor):
|
| 425 |
-
images[k] = images[k].detach().float().cpu()
|
| 426 |
-
if self.clamp and not isheatmap(images[k]):
|
| 427 |
-
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
| 428 |
-
|
| 429 |
-
self.log_local(
|
| 430 |
-
pl_module.logger.save_dir,
|
| 431 |
-
split,
|
| 432 |
-
images,
|
| 433 |
-
pl_module.global_step,
|
| 434 |
-
pl_module.current_epoch,
|
| 435 |
-
batch_idx,
|
| 436 |
-
pl_module=pl_module
|
| 437 |
-
if isinstance(pl_module.logger, WandbLogger)
|
| 438 |
-
else None,
|
| 439 |
-
)
|
| 440 |
-
|
| 441 |
-
if is_train:
|
| 442 |
-
pl_module.train()
|
| 443 |
-
|
| 444 |
-
def check_frequency(self, check_idx):
|
| 445 |
-
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
|
| 446 |
-
check_idx > 0 or self.log_first_step
|
| 447 |
-
):
|
| 448 |
-
try:
|
| 449 |
-
self.log_steps.pop(0)
|
| 450 |
-
except IndexError as e:
|
| 451 |
-
print(e)
|
| 452 |
-
pass
|
| 453 |
-
return True
|
| 454 |
-
return False
|
| 455 |
-
|
| 456 |
-
@rank_zero_only
|
| 457 |
-
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
| 458 |
-
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
| 459 |
-
self.log_img(pl_module, batch, batch_idx, split="train")
|
| 460 |
-
|
| 461 |
-
@rank_zero_only
|
| 462 |
-
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
| 463 |
-
if self.log_before_first_step and pl_module.global_step == 0:
|
| 464 |
-
print(f"{self.__class__.__name__}: logging before training")
|
| 465 |
-
self.log_img(pl_module, batch, batch_idx, split="train")
|
| 466 |
-
|
| 467 |
-
@rank_zero_only
|
| 468 |
-
def on_validation_batch_end(
|
| 469 |
-
self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
|
| 470 |
-
):
|
| 471 |
-
if not self.disabled and pl_module.global_step > 0:
|
| 472 |
-
self.log_img(pl_module, batch, batch_idx, split="val")
|
| 473 |
-
if hasattr(pl_module, "calibrate_grad_norm"):
|
| 474 |
-
if (
|
| 475 |
-
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
|
| 476 |
-
) and batch_idx > 0:
|
| 477 |
-
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
@rank_zero_only
|
| 481 |
-
def init_wandb(save_dir, opt, config, group_name, name_str):
|
| 482 |
-
print(f"setting WANDB_DIR to {save_dir}")
|
| 483 |
-
os.makedirs(save_dir, exist_ok=True)
|
| 484 |
-
|
| 485 |
-
os.environ["WANDB_DIR"] = save_dir
|
| 486 |
-
if opt.debug:
|
| 487 |
-
wandb.init(project=opt.projectname, mode="offline", group=group_name)
|
| 488 |
-
else:
|
| 489 |
-
wandb.init(
|
| 490 |
-
project=opt.projectname,
|
| 491 |
-
config=config,
|
| 492 |
-
settings=wandb.Settings(code_dir="./sgm"),
|
| 493 |
-
group=group_name,
|
| 494 |
-
name=name_str,
|
| 495 |
-
)
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
if __name__ == "__main__":
|
| 499 |
-
# custom parser to specify config files, train, test and debug mode,
|
| 500 |
-
# postfix, resume.
|
| 501 |
-
# `--key value` arguments are interpreted as arguments to the trainer.
|
| 502 |
-
# `nested.key=value` arguments are interpreted as config parameters.
|
| 503 |
-
# configs are merged from left-to-right followed by command line parameters.
|
| 504 |
-
|
| 505 |
-
# model:
|
| 506 |
-
# base_learning_rate: float
|
| 507 |
-
# target: path to lightning module
|
| 508 |
-
# params:
|
| 509 |
-
# key: value
|
| 510 |
-
# data:
|
| 511 |
-
# target: main.DataModuleFromConfig
|
| 512 |
-
# params:
|
| 513 |
-
# batch_size: int
|
| 514 |
-
# wrap: bool
|
| 515 |
-
# train:
|
| 516 |
-
# target: path to train dataset
|
| 517 |
-
# params:
|
| 518 |
-
# key: value
|
| 519 |
-
# validation:
|
| 520 |
-
# target: path to validation dataset
|
| 521 |
-
# params:
|
| 522 |
-
# key: value
|
| 523 |
-
# test:
|
| 524 |
-
# target: path to test dataset
|
| 525 |
-
# params:
|
| 526 |
-
# key: value
|
| 527 |
-
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
| 528 |
-
# trainer:
|
| 529 |
-
# additional arguments to trainer
|
| 530 |
-
# logger:
|
| 531 |
-
# logger to instantiate
|
| 532 |
-
# modelcheckpoint:
|
| 533 |
-
# modelcheckpoint to instantiate
|
| 534 |
-
# callbacks:
|
| 535 |
-
# callback1:
|
| 536 |
-
# target: importpath
|
| 537 |
-
# params:
|
| 538 |
-
# key: value
|
| 539 |
-
|
| 540 |
-
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
| 541 |
-
|
| 542 |
-
# add cwd for convenience and to make classes in this file available when
|
| 543 |
-
# running as `python main.py`
|
| 544 |
-
# (in particular `main.DataModuleFromConfig`)
|
| 545 |
-
sys.path.append(os.getcwd())
|
| 546 |
-
|
| 547 |
-
parser = get_parser()
|
| 548 |
-
|
| 549 |
-
opt, unknown = parser.parse_known_args()
|
| 550 |
-
|
| 551 |
-
if opt.name and opt.resume:
|
| 552 |
-
raise ValueError(
|
| 553 |
-
"-n/--name and -r/--resume cannot be specified both."
|
| 554 |
-
"If you want to resume training in a new log folder, "
|
| 555 |
-
"use -n/--name in combination with --resume_from_checkpoint"
|
| 556 |
-
)
|
| 557 |
-
melk_ckpt_name = None
|
| 558 |
-
name = None
|
| 559 |
-
if opt.resume:
|
| 560 |
-
if not os.path.exists(opt.resume):
|
| 561 |
-
raise ValueError("Cannot find {}".format(opt.resume))
|
| 562 |
-
if os.path.isfile(opt.resume):
|
| 563 |
-
paths = opt.resume.split("/")
|
| 564 |
-
# idx = len(paths)-paths[::-1].index("logs")+1
|
| 565 |
-
# logdir = "/".join(paths[:idx])
|
| 566 |
-
logdir = "/".join(paths[:-2])
|
| 567 |
-
ckpt = opt.resume
|
| 568 |
-
_, melk_ckpt_name = get_checkpoint_name(logdir)
|
| 569 |
-
else:
|
| 570 |
-
assert os.path.isdir(opt.resume), opt.resume
|
| 571 |
-
logdir = opt.resume.rstrip("/")
|
| 572 |
-
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
|
| 573 |
-
|
| 574 |
-
print("#" * 100)
|
| 575 |
-
print(f'Resuming from checkpoint "{ckpt}"')
|
| 576 |
-
print("#" * 100)
|
| 577 |
-
|
| 578 |
-
opt.resume_from_checkpoint = ckpt
|
| 579 |
-
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
|
| 580 |
-
opt.base = base_configs + opt.base
|
| 581 |
-
_tmp = logdir.split("/")
|
| 582 |
-
nowname = _tmp[-1]
|
| 583 |
-
else:
|
| 584 |
-
if opt.name:
|
| 585 |
-
name = "_" + opt.name
|
| 586 |
-
elif opt.base:
|
| 587 |
-
if opt.no_base_name:
|
| 588 |
-
name = ""
|
| 589 |
-
else:
|
| 590 |
-
if opt.legacy_naming:
|
| 591 |
-
cfg_fname = os.path.split(opt.base[0])[-1]
|
| 592 |
-
cfg_name = os.path.splitext(cfg_fname)[0]
|
| 593 |
-
else:
|
| 594 |
-
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
|
| 595 |
-
opt.base[0]
|
| 596 |
-
)[0]
|
| 597 |
-
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
|
| 598 |
-
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
|
| 599 |
-
+ 1 :
|
| 600 |
-
] # cut away the first one (we assert all configs are in "configs")
|
| 601 |
-
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
|
| 602 |
-
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
|
| 603 |
-
name = "_" + cfg_name
|
| 604 |
-
else:
|
| 605 |
-
name = ""
|
| 606 |
-
if not opt.no_date:
|
| 607 |
-
nowname = now + name + opt.postfix
|
| 608 |
-
else:
|
| 609 |
-
nowname = name + opt.postfix
|
| 610 |
-
if nowname.startswith("_"):
|
| 611 |
-
nowname = nowname[1:]
|
| 612 |
-
logdir = os.path.join(opt.logdir, nowname)
|
| 613 |
-
print(f"LOGDIR: {logdir}")
|
| 614 |
-
|
| 615 |
-
ckptdir = os.path.join(logdir, "checkpoints")
|
| 616 |
-
cfgdir = os.path.join(logdir, "configs")
|
| 617 |
-
seed_everything(opt.seed, workers=True)
|
| 618 |
-
|
| 619 |
-
# move before model init, in case a torch.compile(...) is called somewhere
|
| 620 |
-
if opt.enable_tf32:
|
| 621 |
-
# pt_version = version.parse(torch.__version__)
|
| 622 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 623 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 624 |
-
print(f"Enabling TF32 for PyTorch {torch.__version__}")
|
| 625 |
-
else:
|
| 626 |
-
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
|
| 627 |
-
print(
|
| 628 |
-
f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
|
| 629 |
-
)
|
| 630 |
-
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
|
| 631 |
-
|
| 632 |
-
try:
|
| 633 |
-
# init and save configs
|
| 634 |
-
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
| 635 |
-
cli = OmegaConf.from_dotlist(unknown)
|
| 636 |
-
config = OmegaConf.merge(*configs, cli)
|
| 637 |
-
lightning_config = config.pop("lightning", OmegaConf.create())
|
| 638 |
-
# merge trainer cli with config
|
| 639 |
-
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
| 640 |
-
|
| 641 |
-
# default to gpu
|
| 642 |
-
trainer_config["accelerator"] = "gpu"
|
| 643 |
-
#
|
| 644 |
-
standard_args = default_trainer_args()
|
| 645 |
-
for k in standard_args:
|
| 646 |
-
if getattr(opt, k) != standard_args[k]:
|
| 647 |
-
trainer_config[k] = getattr(opt, k)
|
| 648 |
-
|
| 649 |
-
ckpt_resume_path = opt.resume_from_checkpoint
|
| 650 |
-
|
| 651 |
-
if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
|
| 652 |
-
del trainer_config["accelerator"]
|
| 653 |
-
cpu = True
|
| 654 |
-
else:
|
| 655 |
-
gpuinfo = trainer_config["devices"]
|
| 656 |
-
print(f"Running on GPUs {gpuinfo}")
|
| 657 |
-
cpu = False
|
| 658 |
-
trainer_opt = argparse.Namespace(**trainer_config)
|
| 659 |
-
lightning_config.trainer = trainer_config
|
| 660 |
-
|
| 661 |
-
# model
|
| 662 |
-
model = instantiate_from_config(config.model)
|
| 663 |
-
|
| 664 |
-
# trainer and callbacks
|
| 665 |
-
trainer_kwargs = dict()
|
| 666 |
-
|
| 667 |
-
# default logger configs
|
| 668 |
-
default_logger_cfgs = {
|
| 669 |
-
"wandb": {
|
| 670 |
-
"target": "pytorch_lightning.loggers.WandbLogger",
|
| 671 |
-
"params": {
|
| 672 |
-
"name": nowname,
|
| 673 |
-
# "save_dir": logdir,
|
| 674 |
-
"offline": opt.debug,
|
| 675 |
-
"id": nowname,
|
| 676 |
-
"project": opt.projectname,
|
| 677 |
-
"log_model": False,
|
| 678 |
-
# "dir": logdir,
|
| 679 |
-
},
|
| 680 |
-
},
|
| 681 |
-
"csv": {
|
| 682 |
-
"target": "pytorch_lightning.loggers.CSVLogger",
|
| 683 |
-
"params": {
|
| 684 |
-
"name": "testtube", # hack for sbord fanatics
|
| 685 |
-
"save_dir": logdir,
|
| 686 |
-
},
|
| 687 |
-
},
|
| 688 |
-
}
|
| 689 |
-
default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
|
| 690 |
-
if opt.wandb:
|
| 691 |
-
# TODO change once leaving "swiffer" config directory
|
| 692 |
-
try:
|
| 693 |
-
group_name = nowname.split(now)[-1].split("-")[1]
|
| 694 |
-
except:
|
| 695 |
-
group_name = nowname
|
| 696 |
-
default_logger_cfg["params"]["group"] = group_name
|
| 697 |
-
init_wandb(
|
| 698 |
-
os.path.join(os.getcwd(), logdir),
|
| 699 |
-
opt=opt,
|
| 700 |
-
group_name=group_name,
|
| 701 |
-
config=config,
|
| 702 |
-
name_str=nowname,
|
| 703 |
-
)
|
| 704 |
-
if "logger" in lightning_config:
|
| 705 |
-
logger_cfg = lightning_config.logger
|
| 706 |
-
else:
|
| 707 |
-
logger_cfg = OmegaConf.create()
|
| 708 |
-
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
| 709 |
-
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
| 710 |
-
|
| 711 |
-
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
| 712 |
-
# specify which metric is used to determine best models
|
| 713 |
-
default_modelckpt_cfg = {
|
| 714 |
-
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
| 715 |
-
"params": {
|
| 716 |
-
"dirpath": ckptdir,
|
| 717 |
-
"filename": "{epoch:06}",
|
| 718 |
-
"verbose": True,
|
| 719 |
-
"save_last": True,
|
| 720 |
-
},
|
| 721 |
-
}
|
| 722 |
-
if hasattr(model, "monitor"):
|
| 723 |
-
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
| 724 |
-
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
| 725 |
-
default_modelckpt_cfg["params"]["save_top_k"] = 3
|
| 726 |
-
|
| 727 |
-
if "modelcheckpoint" in lightning_config:
|
| 728 |
-
modelckpt_cfg = lightning_config.modelcheckpoint
|
| 729 |
-
else:
|
| 730 |
-
modelckpt_cfg = OmegaConf.create()
|
| 731 |
-
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
| 732 |
-
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
|
| 733 |
-
|
| 734 |
-
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
|
| 735 |
-
# default to ddp if not further specified
|
| 736 |
-
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
|
| 737 |
-
|
| 738 |
-
if "strategy" in lightning_config:
|
| 739 |
-
strategy_cfg = lightning_config.strategy
|
| 740 |
-
else:
|
| 741 |
-
strategy_cfg = OmegaConf.create()
|
| 742 |
-
default_strategy_config["params"] = {
|
| 743 |
-
"find_unused_parameters": False,
|
| 744 |
-
# "static_graph": True,
|
| 745 |
-
# "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
|
| 746 |
-
}
|
| 747 |
-
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
|
| 748 |
-
print(
|
| 749 |
-
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
|
| 750 |
-
)
|
| 751 |
-
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
|
| 752 |
-
|
| 753 |
-
# add callback which sets up log directory
|
| 754 |
-
default_callbacks_cfg = {
|
| 755 |
-
"setup_callback": {
|
| 756 |
-
"target": "main.SetupCallback",
|
| 757 |
-
"params": {
|
| 758 |
-
"resume": opt.resume,
|
| 759 |
-
"now": now,
|
| 760 |
-
"logdir": logdir,
|
| 761 |
-
"ckptdir": ckptdir,
|
| 762 |
-
"cfgdir": cfgdir,
|
| 763 |
-
"config": config,
|
| 764 |
-
"lightning_config": lightning_config,
|
| 765 |
-
"debug": opt.debug,
|
| 766 |
-
"ckpt_name": melk_ckpt_name,
|
| 767 |
-
},
|
| 768 |
-
},
|
| 769 |
-
"image_logger": {
|
| 770 |
-
"target": "main.ImageLogger",
|
| 771 |
-
"params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
|
| 772 |
-
},
|
| 773 |
-
"learning_rate_logger": {
|
| 774 |
-
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
|
| 775 |
-
"params": {
|
| 776 |
-
"logging_interval": "step",
|
| 777 |
-
# "log_momentum": True
|
| 778 |
-
},
|
| 779 |
-
},
|
| 780 |
-
}
|
| 781 |
-
if version.parse(pl.__version__) >= version.parse("1.4.0"):
|
| 782 |
-
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
|
| 783 |
-
|
| 784 |
-
if "callbacks" in lightning_config:
|
| 785 |
-
callbacks_cfg = lightning_config.callbacks
|
| 786 |
-
else:
|
| 787 |
-
callbacks_cfg = OmegaConf.create()
|
| 788 |
-
|
| 789 |
-
if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
|
| 790 |
-
print(
|
| 791 |
-
"Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
|
| 792 |
-
)
|
| 793 |
-
default_metrics_over_trainsteps_ckpt_dict = {
|
| 794 |
-
"metrics_over_trainsteps_checkpoint": {
|
| 795 |
-
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
| 796 |
-
"params": {
|
| 797 |
-
"dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
|
| 798 |
-
"filename": "{epoch:06}-{step:09}",
|
| 799 |
-
"verbose": True,
|
| 800 |
-
"save_top_k": -1,
|
| 801 |
-
"every_n_train_steps": 10000,
|
| 802 |
-
"save_weights_only": True,
|
| 803 |
-
},
|
| 804 |
-
}
|
| 805 |
-
}
|
| 806 |
-
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
|
| 807 |
-
|
| 808 |
-
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
| 809 |
-
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
|
| 810 |
-
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
|
| 811 |
-
elif "ignore_keys_callback" in callbacks_cfg:
|
| 812 |
-
del callbacks_cfg["ignore_keys_callback"]
|
| 813 |
-
|
| 814 |
-
trainer_kwargs["callbacks"] = [
|
| 815 |
-
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
|
| 816 |
-
]
|
| 817 |
-
if not "plugins" in trainer_kwargs:
|
| 818 |
-
trainer_kwargs["plugins"] = list()
|
| 819 |
-
|
| 820 |
-
# cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
|
| 821 |
-
trainer_opt = vars(trainer_opt)
|
| 822 |
-
trainer_kwargs = {
|
| 823 |
-
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
|
| 824 |
-
}
|
| 825 |
-
trainer = Trainer(**trainer_opt, **trainer_kwargs)
|
| 826 |
-
|
| 827 |
-
trainer.logdir = logdir ###
|
| 828 |
-
|
| 829 |
-
# data
|
| 830 |
-
data = instantiate_from_config(config.data)
|
| 831 |
-
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
| 832 |
-
# calling these ourselves should not be necessary but it is.
|
| 833 |
-
# lightning still takes care of proper multiprocessing though
|
| 834 |
-
data.prepare_data()
|
| 835 |
-
# data.setup()
|
| 836 |
-
print("#### Data #####")
|
| 837 |
-
try:
|
| 838 |
-
for k in data.datasets:
|
| 839 |
-
print(
|
| 840 |
-
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
|
| 841 |
-
)
|
| 842 |
-
except:
|
| 843 |
-
print("datasets not yet initialized.")
|
| 844 |
-
|
| 845 |
-
# configure learning rate
|
| 846 |
-
if "batch_size" in config.data.params:
|
| 847 |
-
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
| 848 |
-
else:
|
| 849 |
-
bs, base_lr = (
|
| 850 |
-
config.data.params.train.loader.batch_size,
|
| 851 |
-
config.model.base_learning_rate,
|
| 852 |
-
)
|
| 853 |
-
if not cpu:
|
| 854 |
-
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
|
| 855 |
-
else:
|
| 856 |
-
ngpu = 1
|
| 857 |
-
if "accumulate_grad_batches" in lightning_config.trainer:
|
| 858 |
-
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
| 859 |
-
else:
|
| 860 |
-
accumulate_grad_batches = 1
|
| 861 |
-
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
| 862 |
-
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
| 863 |
-
if opt.scale_lr:
|
| 864 |
-
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
| 865 |
-
print(
|
| 866 |
-
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
|
| 867 |
-
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
|
| 868 |
-
)
|
| 869 |
-
)
|
| 870 |
-
else:
|
| 871 |
-
model.learning_rate = base_lr
|
| 872 |
-
print("++++ NOT USING LR SCALING ++++")
|
| 873 |
-
print(f"Setting learning rate to {model.learning_rate:.2e}")
|
| 874 |
-
|
| 875 |
-
# allow checkpointing via USR1
|
| 876 |
-
def melk(*args, **kwargs):
|
| 877 |
-
# run all checkpoint hooks
|
| 878 |
-
if trainer.global_rank == 0:
|
| 879 |
-
print("Summoning checkpoint.")
|
| 880 |
-
if melk_ckpt_name is None:
|
| 881 |
-
ckpt_path = os.path.join(ckptdir, "last.ckpt")
|
| 882 |
-
else:
|
| 883 |
-
ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
|
| 884 |
-
trainer.save_checkpoint(ckpt_path)
|
| 885 |
-
|
| 886 |
-
def divein(*args, **kwargs):
|
| 887 |
-
if trainer.global_rank == 0:
|
| 888 |
-
import pudb
|
| 889 |
-
|
| 890 |
-
pudb.set_trace()
|
| 891 |
-
|
| 892 |
-
import signal
|
| 893 |
-
|
| 894 |
-
signal.signal(signal.SIGUSR1, melk)
|
| 895 |
-
signal.signal(signal.SIGUSR2, divein)
|
| 896 |
-
|
| 897 |
-
# run
|
| 898 |
-
if opt.train:
|
| 899 |
-
try:
|
| 900 |
-
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
|
| 901 |
-
except Exception:
|
| 902 |
-
if not opt.debug:
|
| 903 |
-
melk()
|
| 904 |
-
raise
|
| 905 |
-
if not opt.no_test and not trainer.interrupted:
|
| 906 |
-
trainer.test(model, data)
|
| 907 |
-
except RuntimeError as err:
|
| 908 |
-
if MULTINODE_HACKS:
|
| 909 |
-
import datetime
|
| 910 |
-
import os
|
| 911 |
-
import socket
|
| 912 |
-
|
| 913 |
-
import requests
|
| 914 |
-
|
| 915 |
-
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
|
| 916 |
-
hostname = socket.gethostname()
|
| 917 |
-
ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
| 918 |
-
resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
|
| 919 |
-
print(
|
| 920 |
-
f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
|
| 921 |
-
flush=True,
|
| 922 |
-
)
|
| 923 |
-
raise err
|
| 924 |
-
except Exception:
|
| 925 |
-
if opt.debug and trainer.global_rank == 0:
|
| 926 |
-
try:
|
| 927 |
-
import pudb as debugger
|
| 928 |
-
except ImportError:
|
| 929 |
-
import pdb as debugger
|
| 930 |
-
debugger.post_mortem()
|
| 931 |
-
raise
|
| 932 |
-
finally:
|
| 933 |
-
# move newly created debug project to debug_runs
|
| 934 |
-
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
| 935 |
-
dst, name = os.path.split(logdir)
|
| 936 |
-
dst = os.path.join(dst, "debug_runs", name)
|
| 937 |
-
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
| 938 |
-
os.rename(logdir, dst)
|
| 939 |
-
|
| 940 |
-
if opt.wandb:
|
| 941 |
-
wandb.finish()
|
| 942 |
-
# if trainer.global_rank == 0:
|
| 943 |
-
# print(trainer.profiler.summary())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|