Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from skillful_nowcasting.dgmr import DGMR
|
| 8 |
+
from datetime import datetime, timezone
|
| 9 |
+
|
| 10 |
+
# Load the pretrained model
|
| 11 |
+
model = DGMR.from_pretrained("openclimatefix/dgmr")
|
| 12 |
+
|
| 13 |
+
def get_latest_radar_image():
|
| 14 |
+
"""Fetches the latest radar image from the Iowa State University archive."""
|
| 15 |
+
now = datetime.now(timezone.utc)
|
| 16 |
+
url = f"https://mesonet.agron.iastate.edu/archive/data/{now.year}/{now.month:02d}/{now.day:02d}/GIS/uscomp/n0r_0.png"
|
| 17 |
+
response = requests.get(url)
|
| 18 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
| 19 |
+
return img
|
| 20 |
+
|
| 21 |
+
def preprocess_image(img):
|
| 22 |
+
"""Preprocesses the image for the model."""
|
| 23 |
+
img = img.resize((128, 128))
|
| 24 |
+
img_array = np.array(img) / 255.0
|
| 25 |
+
img_tensor = torch.from_numpy(img_array).permute(2, 0, 1).float()
|
| 26 |
+
# Add batch and sequence dimensions
|
| 27 |
+
return img_tensor.unsqueeze(0).unsqueeze(0)
|
| 28 |
+
|
| 29 |
+
def postprocess_output(output_tensor):
|
| 30 |
+
"""Postprocesses the model output back to an image."""
|
| 31 |
+
# Take the first prediction in the sequence
|
| 32 |
+
output_tensor = output_tensor[0, 0, :, :, :]
|
| 33 |
+
output_array = output_tensor.permute(1, 2, 0).detach().numpy()
|
| 34 |
+
output_array = (output_array * 255).astype(np.uint8)
|
| 35 |
+
return Image.fromarray(output_array)
|
| 36 |
+
|
| 37 |
+
def predict_nowcast():
|
| 38 |
+
"""Fetches the latest radar, runs the nowcasting model, and returns the images."""
|
| 39 |
+
input_image = get_latest_radar_image()
|
| 40 |
+
preprocessed_input = preprocess_image(input_image)
|
| 41 |
+
|
| 42 |
+
# The DGMR model expects a sequence of 4 input images.
|
| 43 |
+
# For this example, we will feed the same image 4 times.
|
| 44 |
+
model_input = torch.cat([preprocessed_input] * 4, dim=1)
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
output = model(model_input)
|
| 48 |
+
|
| 49 |
+
predicted_image = postprocess_output(output)
|
| 50 |
+
|
| 51 |
+
return input_image, predicted_image
|
| 52 |
+
|
| 53 |
+
# Create the Gradio interface
|
| 54 |
+
with gr.Blocks() as demo:
|
| 55 |
+
gr.Markdown("## American Radar Nowcasting with AI")
|
| 56 |
+
gr.Markdown(
|
| 57 |
+
"Click the button to fetch the latest American radar image and generate a nowcast prediction using the `skillful_nowcasting` model."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
with gr.Row():
|
| 61 |
+
input_image_display = gr.Image(label="Current Radar Image")
|
| 62 |
+
output_image_display = gr.Image(label="Predicted Nowcast")
|
| 63 |
+
|
| 64 |
+
predict_button = gr.Button("Generate Nowcast")
|
| 65 |
+
predict_button.click(
|
| 66 |
+
fn=predict_nowcast,
|
| 67 |
+
inputs=[],
|
| 68 |
+
outputs=[input_image_display, output_image_display]
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
demo.launch()
|