NeelTA commited on
Commit
c9bb5fc
·
1 Parent(s): 73d2190

working app

Browse files
Files changed (4) hide show
  1. .gitignore +36 -0
  2. app.py +40 -0
  3. backend.py +47 -0
  4. requirements.txt +5 -0
.gitignore ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ *.egg-info/
8
+ *.egg
9
+
10
+ # Virtual Environment
11
+ chatbot-env/
12
+ venv/
13
+ ENV/
14
+ env/
15
+ env.bak/
16
+
17
+ # Environment variables
18
+ .env
19
+
20
+ # IDE specific files
21
+ .idea/
22
+ .vscode/
23
+ *.swp
24
+ *.swo
25
+
26
+ # Distribution / packaging
27
+ dist/
28
+ build/
29
+ *.egg-info/
30
+
31
+ # Jupyter Notebook
32
+ .ipynb_checkpoints
33
+
34
+ # Local development settings
35
+ *.log
36
+ .DS_Store
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from backend import backend_chat
3
+ from langchain_core.messages import HumanMessage, BaseMessage, AIMessage
4
+
5
+
6
+ def respond(message: str, history: list[dict]):
7
+ """
8
+ message: the latest user input
9
+ history: openai-style list of dicts with keys 'role' and 'content'
10
+ """
11
+
12
+ backend_history = []
13
+ for msg in history:
14
+ if msg["role"] == "user":
15
+ backend_history.append(HumanMessage(content=msg["content"]))
16
+ elif msg["role"] == "assistant":
17
+ backend_history.append(AIMessage(content=msg["content"]))
18
+
19
+ updated_backend_history = backend_chat(backend_history, message)
20
+ latest_assistant = None
21
+ for msg in reversed(updated_backend_history):
22
+ if not isinstance(msg, HumanMessage):
23
+ latest_assistant = msg
24
+ break
25
+
26
+ if latest_assistant is None:
27
+ return "Sorry, I couldn't generate a response."
28
+ return latest_assistant.content
29
+
30
+ def main():
31
+ demo = gr.ChatInterface(
32
+ fn=respond,
33
+ type="messages",
34
+ title="ChatBot",
35
+ description="Chatbot using langgraph backend and Memory Checkpointing",
36
+ )
37
+ demo.launch()
38
+
39
+ if __name__ == "__main__":
40
+ main()
backend.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # backend.py
2
+
3
+ from langgraph.graph import StateGraph, START, END
4
+ from typing import TypedDict, Annotated, List
5
+ from dotenv import load_dotenv
6
+ from langgraph.checkpoint.memory import InMemorySaver
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_core.messages import BaseMessage, HumanMessage
9
+ from langgraph.graph.message import add_messages
10
+
11
+ load_dotenv()
12
+ THREAD_ID = "1"
13
+
14
+ gen_llm = ChatGoogleGenerativeAI(model='gemini-2.5-flash')
15
+
16
+ class ChatBotState(TypedDict):
17
+ messages: Annotated[List[BaseMessage], add_messages]
18
+
19
+ def chat_node(state: ChatBotState) -> ChatBotState:
20
+ messages = state['messages']
21
+ response = gen_llm.invoke(messages)
22
+ # depending on design, maybe response returns BaseMessage or list
23
+ return {'messages': [response]}
24
+
25
+ # build graph
26
+ graph = StateGraph(ChatBotState)
27
+ graph.add_node('chat_node', chat_node)
28
+ graph.add_edge(START, 'chat_node')
29
+ graph.add_edge('chat_node', END)
30
+ checkpointer = InMemorySaver()
31
+ chatbot = graph.compile(checkpointer=checkpointer)
32
+
33
+ def backend_chat(history: List[BaseMessage], user_text: str) -> List[BaseMessage]:
34
+ if history is None:
35
+ history = []
36
+ history.append(HumanMessage(content=user_text))
37
+ state = {'messages': history}
38
+ config = {
39
+ "configurable": {
40
+ "thread_id": THREAD_ID
41
+ }
42
+ }
43
+ result_state = chatbot.invoke(state, config=config)
44
+ new_messages = result_state.get('messages', [])
45
+ # append new messages (assistant responses) to history
46
+ history.extend(new_messages)
47
+ return history
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ langgraph
2
+ langchain
3
+ langchain-google-genai
4
+ python-dotenv
5
+ gradio