# backend.py from langgraph.graph import StateGraph, START, END from typing import TypedDict, Annotated, List, Generator, Union, Dict, Any from dotenv import load_dotenv from langgraph.checkpoint.memory import InMemorySaver from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.messages import BaseMessage, HumanMessage, AIMessage, AIMessageChunk from langgraph.graph.message import add_messages import logging # --- Basic logging for debugging --- # logging.basicConfig(level=logging.DEBUG) # Uncomment for more details during testing logger = logging.getLogger(__name__) load_dotenv() THREAD_ID = "1" # Initialize the LLM # Ensure the model name is correct and available (e.g., 'gemini-1.5-flash' or 'gemini-pro') gen_llm = ChatGoogleGenerativeAI(model='gemini-1.5-flash') class ChatState(TypedDict): messages: Annotated[list[BaseMessage], add_messages] def chat_node(state: ChatState): messages = state['messages'] response = gen_llm.invoke(messages) return {"messages": [response]} # Checkpointer checkpointer = InMemorySaver() graph = StateGraph(ChatState) graph.add_node("chat_node", chat_node) graph.add_edge(START, "chat_node") graph.add_edge("chat_node", END) chatbot = graph.compile(checkpointer=checkpointer) # --- End Build Graph ---