Spaces:
Runtime error
Runtime error
Initial commit
Browse files- assets/cat_dog.jpg +0 -0
- flagged/img ndarray/0.jpg +0 -0
- flagged/img ndarray/1.jpg +0 -0
- flagged/log.csv +3 -0
- flagged/output/0.png +0 -0
- flagged/output/1.png +0 -0
- gradcam/__pycache__/utils.cpython-38.pyc +0 -0
- gradcam/app.py +61 -0
- gradcam/utils.py +100 -0
- requirements.txt +6 -0
assets/cat_dog.jpg
ADDED
|
flagged/img ndarray/0.jpg
ADDED
|
flagged/img ndarray/1.jpg
ADDED
|
flagged/log.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'text','img ndarray','output','timestamp'
|
| 2 |
+
'big ship','img ndarray/0.jpg','output/0.png','2022-04-16 19:37:48.314750'
|
| 3 |
+
'microphone','img ndarray/1.jpg','output/1.png','2022-04-16 21:45:35.413185'
|
flagged/output/0.png
ADDED
|
flagged/output/1.png
ADDED
|
gradcam/__pycache__/utils.cpython-38.pyc
ADDED
|
Binary file (2.77 kB). View file
|
|
|
gradcam/app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import clip
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
import utils
|
| 6 |
+
|
| 7 |
+
clip_model = "RN50x4"
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model, preprocess = clip.load(clip_model, device=device, jit=False)
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def grad_cam_fn(text, img, saliency_layer):
|
| 14 |
+
resize = model.visual.input_resolution
|
| 15 |
+
img = img.resize((resize, resize))
|
| 16 |
+
|
| 17 |
+
text_input = clip.tokenize([text]).to(device)
|
| 18 |
+
text_feature = model.encode_text(text_input).float()
|
| 19 |
+
image_input = preprocess(img).unsqueeze(0).to(device)
|
| 20 |
+
|
| 21 |
+
attn_map = utils.gradCAM(
|
| 22 |
+
model.visual,
|
| 23 |
+
image_input,
|
| 24 |
+
text_feature,
|
| 25 |
+
getattr(model.visual, saliency_layer)
|
| 26 |
+
)
|
| 27 |
+
attn_map = attn_map.squeeze().detach().cpu().numpy()
|
| 28 |
+
attn_map = utils.getAttMap(img, attn_map)
|
| 29 |
+
|
| 30 |
+
return attn_map
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if __name__ == '__main__':
|
| 34 |
+
interface = gr.Interface(
|
| 35 |
+
fn=grad_cam_fn,
|
| 36 |
+
inputs=[
|
| 37 |
+
gr.inputs.Textbox(
|
| 38 |
+
label="Target Text",
|
| 39 |
+
lines=1),
|
| 40 |
+
gr.inputs.Image(
|
| 41 |
+
label='Input Image',
|
| 42 |
+
image_mode="RGB",
|
| 43 |
+
type='pil',
|
| 44 |
+
shape=(512, 512)),
|
| 45 |
+
gr.inputs.Dropdown(
|
| 46 |
+
["layer4", "layer3", "layer2", "layer1"],
|
| 47 |
+
default="layer4",
|
| 48 |
+
label="Saliency Layer")
|
| 49 |
+
],
|
| 50 |
+
outputs=gr.outputs.Image(
|
| 51 |
+
type="pil",
|
| 52 |
+
label="Attention Map"),
|
| 53 |
+
examples=[
|
| 54 |
+
['a cat lying on the floor', 'assets/cat_dog.jpg', 'layer4'],
|
| 55 |
+
['a dog sitting', 'assets/cat_dog.jpg', 'layer4']
|
| 56 |
+
],
|
| 57 |
+
description="OpenAI CLIP Grad CAM")
|
| 58 |
+
interface.launch(
|
| 59 |
+
server_name='0.0.0.0',
|
| 60 |
+
server_port=7861,
|
| 61 |
+
share=False)
|
gradcam/utils.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import matplotlib.cm
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Hook:
|
| 10 |
+
"""Attaches to a module and records its activations and gradients."""
|
| 11 |
+
|
| 12 |
+
def __init__(self, module: nn.Module):
|
| 13 |
+
self.data = None
|
| 14 |
+
self.hook = module.register_forward_hook(self.save_grad)
|
| 15 |
+
|
| 16 |
+
def save_grad(self, module, input, output):
|
| 17 |
+
self.data = output
|
| 18 |
+
output.requires_grad_(True)
|
| 19 |
+
output.retain_grad()
|
| 20 |
+
|
| 21 |
+
def __enter__(self):
|
| 22 |
+
return self
|
| 23 |
+
|
| 24 |
+
def __exit__(self, exc_type, exc_value, exc_traceback):
|
| 25 |
+
self.hook.remove()
|
| 26 |
+
|
| 27 |
+
@property
|
| 28 |
+
def activation(self) -> torch.Tensor:
|
| 29 |
+
return self.data
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def gradient(self) -> torch.Tensor:
|
| 33 |
+
return self.data.grad
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Reference: https://arxiv.org/abs/1610.02391
|
| 37 |
+
def gradCAM(
|
| 38 |
+
model: nn.Module,
|
| 39 |
+
input: torch.Tensor,
|
| 40 |
+
target: torch.Tensor,
|
| 41 |
+
layer: nn.Module
|
| 42 |
+
) -> torch.Tensor:
|
| 43 |
+
# Zero out any gradients at the input.
|
| 44 |
+
if input.grad is not None:
|
| 45 |
+
input.grad.data.zero_()
|
| 46 |
+
|
| 47 |
+
# Disable gradient settings.
|
| 48 |
+
requires_grad = {}
|
| 49 |
+
for name, param in model.named_parameters():
|
| 50 |
+
requires_grad[name] = param.requires_grad
|
| 51 |
+
param.requires_grad_(False)
|
| 52 |
+
|
| 53 |
+
# Attach a hook to the model at the desired layer.
|
| 54 |
+
assert isinstance(layer, nn.Module)
|
| 55 |
+
with Hook(layer) as hook:
|
| 56 |
+
# Do a forward and backward pass.
|
| 57 |
+
output = model(input)
|
| 58 |
+
output.backward(target)
|
| 59 |
+
|
| 60 |
+
grad = hook.gradient.float()
|
| 61 |
+
act = hook.activation.float()
|
| 62 |
+
|
| 63 |
+
# Global average pool gradient across spatial dimension
|
| 64 |
+
# to obtain importance weights.
|
| 65 |
+
alpha = grad.mean(dim=(2, 3), keepdim=True)
|
| 66 |
+
# Weighted combination of activation maps over channel
|
| 67 |
+
# dimension.
|
| 68 |
+
gradcam = torch.sum(act * alpha, dim=1, keepdim=True)
|
| 69 |
+
# We only want neurons with positive influence so we
|
| 70 |
+
# clamp any negative ones.
|
| 71 |
+
gradcam = torch.clamp(gradcam, min=0)
|
| 72 |
+
|
| 73 |
+
# Resize gradcam to input resolution.
|
| 74 |
+
gradcam = F.interpolate(
|
| 75 |
+
gradcam,
|
| 76 |
+
input.shape[2:],
|
| 77 |
+
mode='bicubic',
|
| 78 |
+
align_corners=False)
|
| 79 |
+
|
| 80 |
+
# Restore gradient settings.
|
| 81 |
+
for name, param in model.named_parameters():
|
| 82 |
+
param.requires_grad_(requires_grad[name])
|
| 83 |
+
|
| 84 |
+
return gradcam
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# Modified from: https://github.com/salesforce/ALBEF/blob/main/visualization.ipynb
|
| 88 |
+
def getAttMap(img, attn_map):
|
| 89 |
+
# Normalize attention map
|
| 90 |
+
attn_map = attn_map - attn_map.min()
|
| 91 |
+
if attn_map.max() > 0:
|
| 92 |
+
attn_map = attn_map / attn_map.max()
|
| 93 |
+
|
| 94 |
+
H = matplotlib.cm.jet(attn_map)
|
| 95 |
+
H = (H * 255).astype(np.uint8)[:, :, :3]
|
| 96 |
+
img_heatmap = Image.fromarray(H)
|
| 97 |
+
img_heatmap = img_heatmap.resize((256, 256))
|
| 98 |
+
|
| 99 |
+
return Image.blend(
|
| 100 |
+
img.resize((256, 256)), img_heatmap, 0.4)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=2.9.0,<2.10.0
|
| 2 |
+
torch>=1.10.0,<1.11.0
|
| 3 |
+
git+https://github.com/openai/CLIP.git
|
| 4 |
+
Pillow
|
| 5 |
+
matplotlib
|
| 6 |
+
numpy
|