Spaces:
Sleeping
Sleeping
Update app.py
Browse filesUpdated the app with more examples
app.py
CHANGED
|
@@ -1,3 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
"""
|
| 3 |
Gradio App for NYC Taxi Fare Prediction & Road Route Visualization using OSRM
|
|
@@ -179,6 +387,28 @@ def predict_fare_and_map(plat, plong, dlat, dlong, psngr, dt):
|
|
| 179 |
f"Route Distance (OSRM): {route_distance_km:.2f} km")
|
| 180 |
return output_text, map_html
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
# -----------------------------
|
| 183 |
# Gradio Interface
|
| 184 |
# -----------------------------
|
|
@@ -196,12 +426,15 @@ iface = gr.Interface(
|
|
| 196 |
gr.Textbox(label="Prediction & Distance"),
|
| 197 |
gr.HTML(label="Map")
|
| 198 |
],
|
|
|
|
| 199 |
title="NYC Taxi Fare Prediction with OSRM Road Route",
|
| 200 |
description=(
|
| 201 |
"Enter pickup/dropoff coordinates, passenger count, and pickup datetime to predict the taxi fare. "
|
| 202 |
-
"The app displays the actual road route (blue line) from OSRM on a Folium map."
|
|
|
|
| 203 |
)
|
| 204 |
)
|
| 205 |
|
| 206 |
if __name__ == "__main__":
|
| 207 |
iface.launch()
|
|
|
|
|
|
| 1 |
+
# #!/usr/bin/env python
|
| 2 |
+
# """
|
| 3 |
+
# Gradio App for NYC Taxi Fare Prediction & Road Route Visualization using OSRM
|
| 4 |
+
|
| 5 |
+
# Requirements:
|
| 6 |
+
# pip install torch gradio requests polyline folium pandas numpy
|
| 7 |
+
# """
|
| 8 |
+
|
| 9 |
+
# import torch
|
| 10 |
+
# import torch.nn as nn
|
| 11 |
+
# import numpy as np
|
| 12 |
+
# import pandas as pd
|
| 13 |
+
# import requests
|
| 14 |
+
# import polyline
|
| 15 |
+
# import folium
|
| 16 |
+
# import gradio as gr
|
| 17 |
+
|
| 18 |
+
# # -----------------------------
|
| 19 |
+
# # Model Definition (TabularModel)
|
| 20 |
+
# # -----------------------------
|
| 21 |
+
# class TabularModel(nn.Module):
|
| 22 |
+
# def __init__(self, emb_szs, n_cont, out_sz, layers, p=0.5):
|
| 23 |
+
# """
|
| 24 |
+
# Model for tabular data combining embeddings for categorical variables and
|
| 25 |
+
# a feed-forward network for continuous features.
|
| 26 |
+
# """
|
| 27 |
+
# super().__init__()
|
| 28 |
+
# self.embeds = nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in emb_szs])
|
| 29 |
+
# self.emb_drop = nn.Dropout(p)
|
| 30 |
+
# self.bn_cont = nn.BatchNorm1d(n_cont)
|
| 31 |
+
|
| 32 |
+
# n_emb = sum([nf for _, nf in emb_szs])
|
| 33 |
+
# n_in = n_emb + n_cont
|
| 34 |
+
|
| 35 |
+
# layerlist = []
|
| 36 |
+
# for i in layers:
|
| 37 |
+
# layerlist.append(nn.Linear(n_in, i))
|
| 38 |
+
# layerlist.append(nn.ReLU(inplace=True))
|
| 39 |
+
# layerlist.append(nn.BatchNorm1d(i))
|
| 40 |
+
# layerlist.append(nn.Dropout(p))
|
| 41 |
+
# n_in = i
|
| 42 |
+
# layerlist.append(nn.Linear(layers[-1], out_sz))
|
| 43 |
+
# self.layers = nn.Sequential(*layerlist)
|
| 44 |
+
|
| 45 |
+
# def forward(self, x_cat, x_cont):
|
| 46 |
+
# embeddings = []
|
| 47 |
+
# for i, e in enumerate(self.embeds):
|
| 48 |
+
# embeddings.append(e(x_cat[:, i]))
|
| 49 |
+
# x = torch.cat(embeddings, 1)
|
| 50 |
+
# x = self.emb_drop(x)
|
| 51 |
+
|
| 52 |
+
# x_cont = self.bn_cont(x_cont)
|
| 53 |
+
# x = torch.cat([x, x_cont], 1)
|
| 54 |
+
# x = self.layers(x)
|
| 55 |
+
# return x
|
| 56 |
+
|
| 57 |
+
# # -----------------------------
|
| 58 |
+
# # Load the trained model
|
| 59 |
+
# # -----------------------------
|
| 60 |
+
# # These parameters must match those used during training.
|
| 61 |
+
# emb_szs = [(24, 12), (2, 1), (7, 4)]
|
| 62 |
+
# n_cont = 6 # [pickup_lat, pickup_long, dropoff_lat, dropoff_long, passenger_count, dist_km]
|
| 63 |
+
# out_sz = 1
|
| 64 |
+
# layers = [200, 100]
|
| 65 |
+
# p = 0.4
|
| 66 |
+
|
| 67 |
+
# model = TabularModel(emb_szs, n_cont, out_sz, layers, p)
|
| 68 |
+
# # Load model state (using weights_only=True to address the warning)
|
| 69 |
+
# model.load_state_dict(torch.load("TaxiFareRegrModel.pt", map_location=torch.device("cpu"), weights_only=True))
|
| 70 |
+
# model.eval()
|
| 71 |
+
|
| 72 |
+
# # -----------------------------
|
| 73 |
+
# # Helper Function: Haversine
|
| 74 |
+
# # -----------------------------
|
| 75 |
+
# def haversine_distance_coords(lat1, lon1, lat2, lon2):
|
| 76 |
+
# """Compute haversine distance (in km) between two coordinate pairs."""
|
| 77 |
+
# r = 6371 # Earth's radius in kilometers
|
| 78 |
+
# phi1 = np.radians(lat1)
|
| 79 |
+
# phi2 = np.radians(lat2)
|
| 80 |
+
# delta_phi = np.radians(lat2 - lat1)
|
| 81 |
+
# delta_lambda = np.radians(lon2 - lon1)
|
| 82 |
+
# a = np.sin(delta_phi/2)**2 + np.cos(phi1)*np.cos(phi2)*np.sin(delta_lambda/2)**2
|
| 83 |
+
# c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
|
| 84 |
+
# return r * c
|
| 85 |
+
|
| 86 |
+
# # -----------------------------
|
| 87 |
+
# # OSRM Route Retrieval
|
| 88 |
+
# # -----------------------------
|
| 89 |
+
# def get_osrm_route(lat1, lon1, lat2, lon2):
|
| 90 |
+
# """
|
| 91 |
+
# Query OSRM for a route between (lat1, lon1) and (lat2, lon2).
|
| 92 |
+
# Returns:
|
| 93 |
+
# - route_points: list of (lat, lon) tuples for the route polyline
|
| 94 |
+
# - distance_m: route distance in meters (from OSRM)
|
| 95 |
+
# - duration_s: route duration in seconds (from OSRM)
|
| 96 |
+
# """
|
| 97 |
+
# # OSRM expects coordinates as "lon,lat;lon,lat"
|
| 98 |
+
# coords = f"{lon1},{lat1};{lon2},{lat2}"
|
| 99 |
+
# OSRM_URL = f"http://router.project-osrm.org/route/v1/driving/{coords}?overview=full&geometries=polyline"
|
| 100 |
+
|
| 101 |
+
# response = requests.get(OSRM_URL)
|
| 102 |
+
# response.raise_for_status()
|
| 103 |
+
# data = response.json()
|
| 104 |
+
|
| 105 |
+
# if data.get("code") != "Ok":
|
| 106 |
+
# raise Exception("Route not found")
|
| 107 |
+
|
| 108 |
+
# route = data["routes"][0]
|
| 109 |
+
# encoded_poly = route["geometry"]
|
| 110 |
+
# route_points = polyline.decode(encoded_poly)
|
| 111 |
+
# distance_m = route["distance"]
|
| 112 |
+
# duration_s = route["duration"]
|
| 113 |
+
# return route_points, distance_m, duration_s
|
| 114 |
+
|
| 115 |
+
# # -----------------------------
|
| 116 |
+
# # Main Prediction & Mapping Function
|
| 117 |
+
# # -----------------------------
|
| 118 |
+
# def predict_fare_and_map(plat, plong, dlat, dlong, psngr, dt):
|
| 119 |
+
# """
|
| 120 |
+
# 1. Process pickup datetime to extract categorical features.
|
| 121 |
+
# 2. Compute haversine distance for the model input.
|
| 122 |
+
# 3. Use the PyTorch model to predict the taxi fare.
|
| 123 |
+
# 4. Query OSRM for the actual road route geometry & distance.
|
| 124 |
+
# 5. Draw a Folium map with the OSRM route (blue line) and markers.
|
| 125 |
+
# 6. Return a text string with predicted fare and route distance, plus the map HTML.
|
| 126 |
+
# """
|
| 127 |
+
# # Process datetime
|
| 128 |
+
# try:
|
| 129 |
+
# pickup_dt = pd.to_datetime(dt)
|
| 130 |
+
# except Exception as e:
|
| 131 |
+
# return f"Error parsing date/time: {e}", ""
|
| 132 |
+
|
| 133 |
+
# hour = pickup_dt.hour
|
| 134 |
+
# am_or_pm = 0 if hour < 12 else 1
|
| 135 |
+
# weekday_str = pickup_dt.strftime("%a")
|
| 136 |
+
# weekday_map = {'Fri': 0, 'Mon': 1, 'Sat': 2, 'Sun': 3, 'Thu': 4, 'Tue': 5, 'Wed': 6}
|
| 137 |
+
# weekday = weekday_map.get(weekday_str, 0)
|
| 138 |
+
|
| 139 |
+
# # Prepare tensors for model input (use haversine distance)
|
| 140 |
+
# dist_km = haversine_distance_coords(plat, plong, dlat, dlong)
|
| 141 |
+
# cat_array = np.array([[hour, am_or_pm, weekday]])
|
| 142 |
+
# cat_tensor = torch.tensor(cat_array, dtype=torch.int64)
|
| 143 |
+
# cont_array = np.array([[plat, plong, dlat, dlong, psngr, dist_km]])
|
| 144 |
+
# cont_tensor = torch.tensor(cont_array, dtype=torch.float)
|
| 145 |
+
|
| 146 |
+
# # Predict fare
|
| 147 |
+
# with torch.no_grad():
|
| 148 |
+
# pred = model(cat_tensor, cont_tensor)
|
| 149 |
+
# fare_pred = pred.item()
|
| 150 |
+
|
| 151 |
+
# # Get route from OSRM
|
| 152 |
+
# try:
|
| 153 |
+
# route_points, route_distance_m, route_duration_s = get_osrm_route(plat, plong, dlat, dlong)
|
| 154 |
+
# except Exception as e:
|
| 155 |
+
# return f"Error from OSRM: {e}", ""
|
| 156 |
+
|
| 157 |
+
# # Create Folium map centered between pickup & dropoff
|
| 158 |
+
# mid_lat = (plat + dlat) / 2
|
| 159 |
+
# mid_lon = (plong + dlong) / 2
|
| 160 |
+
# m = folium.Map(location=[mid_lat, mid_lon], zoom_start=12)
|
| 161 |
+
|
| 162 |
+
# # Add markers
|
| 163 |
+
# folium.Marker([plat, plong], icon=folium.Icon(color="green"), tooltip="Pickup").add_to(m)
|
| 164 |
+
# folium.Marker([dlat, dlong], icon=folium.Icon(color="red"), tooltip="Dropoff").add_to(m)
|
| 165 |
+
|
| 166 |
+
# # Draw the route polyline (blue line) with popup showing OSRM distance
|
| 167 |
+
# folium.PolyLine(
|
| 168 |
+
# route_points,
|
| 169 |
+
# color="blue",
|
| 170 |
+
# weight=3,
|
| 171 |
+
# opacity=0.7,
|
| 172 |
+
# popup=f"OSRM Distance: {route_distance_m/1000:.2f} km"
|
| 173 |
+
# ).add_to(m)
|
| 174 |
+
|
| 175 |
+
# map_html = m._repr_html_()
|
| 176 |
+
|
| 177 |
+
# route_distance_km = route_distance_m / 1000
|
| 178 |
+
# output_text = (f"Predicted Fare: ${fare_pred:.2f}\n"
|
| 179 |
+
# f"Route Distance (OSRM): {route_distance_km:.2f} km")
|
| 180 |
+
# return output_text, map_html
|
| 181 |
+
|
| 182 |
+
# # -----------------------------
|
| 183 |
+
# # Gradio Interface
|
| 184 |
+
# # -----------------------------
|
| 185 |
+
# iface = gr.Interface(
|
| 186 |
+
# fn=predict_fare_and_map,
|
| 187 |
+
# inputs=[
|
| 188 |
+
# gr.Number(label="Pickup Latitude", value=40.75),
|
| 189 |
+
# gr.Number(label="Pickup Longitude", value=-73.99),
|
| 190 |
+
# gr.Number(label="Dropoff Latitude", value=40.73),
|
| 191 |
+
# gr.Number(label="Dropoff Longitude", value=-73.98),
|
| 192 |
+
# gr.Number(label="Passenger Count", value=1),
|
| 193 |
+
# gr.Textbox(label="Pickup Date and Time (YYYY-MM-DD HH:MM:SS)", value="2010-04-19 08:17:56")
|
| 194 |
+
# ],
|
| 195 |
+
# outputs=[
|
| 196 |
+
# gr.Textbox(label="Prediction & Distance"),
|
| 197 |
+
# gr.HTML(label="Map")
|
| 198 |
+
# ],
|
| 199 |
+
# title="NYC Taxi Fare Prediction with OSRM Road Route",
|
| 200 |
+
# description=(
|
| 201 |
+
# "Enter pickup/dropoff coordinates, passenger count, and pickup datetime to predict the taxi fare. "
|
| 202 |
+
# "The app displays the actual road route (blue line) from OSRM on a Folium map."
|
| 203 |
+
# )
|
| 204 |
+
# )
|
| 205 |
+
|
| 206 |
+
# if __name__ == "__main__":
|
| 207 |
+
# iface.launch()
|
| 208 |
+
|
| 209 |
#!/usr/bin/env python
|
| 210 |
"""
|
| 211 |
Gradio App for NYC Taxi Fare Prediction & Road Route Visualization using OSRM
|
|
|
|
| 387 |
f"Route Distance (OSRM): {route_distance_km:.2f} km")
|
| 388 |
return output_text, map_html
|
| 389 |
|
| 390 |
+
# -----------------------------
|
| 391 |
+
# Example Locations (Popular NYC Spots)
|
| 392 |
+
# Each example is a list of 6 inputs:
|
| 393 |
+
# [pickup_lat, pickup_lon, dropoff_lat, dropoff_lon, passenger_count, pickup_datetime]
|
| 394 |
+
# -----------------------------
|
| 395 |
+
examples = [
|
| 396 |
+
# 1. Times Square to Central Park (short ride)
|
| 397 |
+
[40.7580, -73.9855, 40.7690, -73.9819, 1, "2010-04-19 08:17:56"],
|
| 398 |
+
# 2. Times Square to JFK Airport (long ride)
|
| 399 |
+
[40.7580, -73.9855, 40.6413, -73.7781, 1, "2010-04-19 08:17:56"],
|
| 400 |
+
# 3. Grand Central Terminal to Empire State Building (very short ride)
|
| 401 |
+
[40.7527, -73.9772, 40.7484, -73.9857, 1, "2010-04-19 08:17:56"],
|
| 402 |
+
# 4. Brooklyn Bridge to Wall Street (short urban ride)
|
| 403 |
+
[40.7061, -73.9969, 40.7069, -74.0113, 1, "2010-04-19 08:17:56"],
|
| 404 |
+
# 5. Yankee Stadium to Central Park (moderate ride)
|
| 405 |
+
[40.8296, -73.9262, 40.7829, -73.9654, 1, "2010-04-19 08:17:56"],
|
| 406 |
+
# 6. Columbia University area to Rockefeller Center (cross-city ride)
|
| 407 |
+
[40.8075, -73.9626, 40.7587, -73.9787, 1, "2010-04-19 08:17:56"],
|
| 408 |
+
# 7. Battery Park to Central Park (longer ride across Manhattan)
|
| 409 |
+
[40.7033, -74.0170, 40.7829, -73.9654, 1, "2010-04-19 08:17:56"]
|
| 410 |
+
]
|
| 411 |
+
|
| 412 |
# -----------------------------
|
| 413 |
# Gradio Interface
|
| 414 |
# -----------------------------
|
|
|
|
| 426 |
gr.Textbox(label="Prediction & Distance"),
|
| 427 |
gr.HTML(label="Map")
|
| 428 |
],
|
| 429 |
+
examples=examples,
|
| 430 |
title="NYC Taxi Fare Prediction with OSRM Road Route",
|
| 431 |
description=(
|
| 432 |
"Enter pickup/dropoff coordinates, passenger count, and pickup datetime to predict the taxi fare. "
|
| 433 |
+
"The app displays the actual road route (blue line) from OSRM on a Folium map. "
|
| 434 |
+
"You can also choose from several example routes between popular locations in New York."
|
| 435 |
)
|
| 436 |
)
|
| 437 |
|
| 438 |
if __name__ == "__main__":
|
| 439 |
iface.launch()
|
| 440 |
+
|