import yfinance as yf import pandas as pd import numpy as np import torch from datetime import datetime, timedelta import plotly.graph_objects as go from plotly.subplots import make_subplots import spaces def get_indonesian_stocks(): return { "BBCA.JK": "Bank Central Asia", "BBRI.JK": "Bank BRI", "BBNI.JK": "Bank BNI", "BMRI.JK": "Bank Mandiri", "TLKM.JK": "Telkom Indonesia", "UNVR.JK": "Unilever Indonesia", "ASII.JK": "Astra International", "INDF.JK": "Indofood Sukses Makmur", "KLBF.JK": "Kalbe Farma", "HMSP.JK": "HM Sampoerna", "GGRM.JK": "Gudang Garam", "ADRO.JK": "Adaro Energy", "PGAS.JK": "Perusahaan Gas Negara", "JSMR.JK": "Jasa Marga", "WIKA.JK": "Wijaya Karya", "PTBA.JK": "Tambang Batubara Bukit Asam", "ANTM.JK": "Aneka Tambang", "SMGR.JK": "Semen Indonesia", "INTP.JK": "Indocement Tunggal Prakasa", "ITMG.JK": "Indo Tambangraya Megah" } def calculate_technical_indicators(data): indicators = {} def calculate_rsi(prices, period=14): delta = prices.diff() gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi indicators['rsi'] = {'current': calculate_rsi(data['Close']).iloc[-1], 'values': calculate_rsi(data['Close'])} def calculate_macd(prices, fast=12, slow=26, signal=9): exp1 = prices.ewm(span=fast).mean() exp2 = prices.ewm(span=slow).mean() macd = exp1 - exp2 signal_line = macd.ewm(span=signal).mean() histogram = macd - signal_line return macd, signal_line, histogram macd, signal_line, histogram = calculate_macd(data['Close']) indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line} def calculate_bollinger_bands(prices, period=20, std_dev=2): sma = prices.rolling(window=period).mean() std = prices.rolling(window=period).std() upper_band = sma + (std * std_dev) lower_band = sma - (std * std_dev) return upper_band, sma, lower_band upper, middle, lower = calculate_bollinger_bands(data['Close']) current_price = data['Close'].iloc[-1] bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1]) indicators['bollinger'] = { 'upper': upper.iloc[-1], 'middle': middle.iloc[-1], 'lower': lower.iloc[-1], 'upper_values': upper, 'middle_values': middle, 'lower_values': lower, 'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE' } sma_20_series = data['Close'].rolling(20).mean() sma_50_series = data['Close'].rolling(50).mean() indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series} indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]} return indicators def generate_trading_signals(data, indicators): signals = {} current_price = data['Close'].iloc[-1] buy_signals = 0 sell_signals = 0 signal_details = [] rsi = indicators['rsi']['current'] if rsi < 30: buy_signals += 1 signal_details.append(f"✅ RSI ({rsi:.1f}) - Oversold - BUY signal") elif rsi > 70: sell_signals += 1 signal_details.append(f"❌ RSI ({rsi:.1f}) - Overbought - SELL signal") else: signal_details.append(f"⚪ RSI ({rsi:.1f}) - Neutral") macd_hist = indicators['macd']['histogram'] if macd_hist > 0: buy_signals += 1 signal_details.append(f"✅ MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal") else: sell_signals += 1 signal_details.append(f"❌ MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal") bb_position = indicators['bollinger']['position'] if bb_position == 'LOWER': buy_signals += 1 signal_details.append(f"✅ Bollinger Bands - Near lower band - BUY signal") elif bb_position == 'UPPER': sell_signals += 1 signal_details.append(f"❌ Bollinger Bands - Near upper band - SELL signal") else: signal_details.append("⚪ Bollinger Bands - Middle position") sma_20 = indicators['moving_averages']['sma_20'] sma_50 = indicators['moving_averages']['sma_50'] if current_price > sma_20 > sma_50: buy_signals += 1 signal_details.append(f"✅ Price above MA(20,50) - Bullish - BUY signal") elif current_price < sma_20 < sma_50: sell_signals += 1 signal_details.append(f"❌ Price below MA(20,50) - Bearish - SELL signal") else: signal_details.append("⚪ Moving Averages - Mixed signals") volume_ratio = indicators['volume']['ratio'] if volume_ratio > 1.5: buy_signals += 0.5 signal_details.append(f"✅ High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal") elif volume_ratio < 0.5: sell_signals += 0.5 signal_details.append(f"❌ Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal") else: signal_details.append(f"⚪ Normal volume ({volume_ratio:.1f}x avg)") total_signals = buy_signals + sell_signals signal_strength = (buy_signals / max(total_signals, 1)) * 100 overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD" recent_high = data['High'].tail(20).max() recent_low = data['Low'].tail(20).min() signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05} return signals def get_fundamental_data(stock): try: info = stock.info history = stock.history(period="1d") fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"} return fundamental_info except: return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'} def format_large_number(num): if num >= 1e12: return f"{num/1e12:.2f}T" elif num >= 1e9: return f"{num/1e9:.2f}B" elif num >= 1e6: return f"{num/1e6:.2f}M" elif num >= 1e3: return f"{num/1e3:.2f}K" else: return f"{num:.2f}" @spaces.GPU(duration=120) def predict_prices(data, model=None, tokenizer=None, prediction_days=30): try: prices = data['Close'].values.astype(np.float32) from chronos import BaseChronosPipeline pipeline = BaseChronosPipeline.from_pretrained("amazon/chronos-bolt-base", device_map="auto") with torch.no_grad(): forecast = pipeline.predict(context=torch.tensor(prices), prediction_length=prediction_days) forecast_np = forecast.squeeze().cpu().numpy() if isinstance(forecast, torch.Tensor) else np.array(forecast) if forecast_np.ndim > 1: mean_forecast = forecast_np.mean(axis=tuple(range(forecast_np.ndim - 1))) else: mean_forecast = forecast_np last_price = prices[-1] predicted_high = float(np.max(mean_forecast)) predicted_low = float(np.min(mean_forecast)) predicted_mean = float(np.mean(mean_forecast)) change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0 return {'values': mean_forecast, 'dates': pd.date_range(start=data.index[-1] + timedelta(days=1), periods=len(mean_forecast), freq='D'), 'high_30d': predicted_high, 'low_30d': predicted_low, 'mean_30d': predicted_mean, 'change_pct': change_pct, 'summary': f"AI Model: Amazon Chronos-Bolt (Base)\nPredicted High: {predicted_high:.2f}\nPredicted Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%"} except Exception as e: print(f"Error in prediction: {e}") return {'values': [], 'dates': [], 'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0, 'summary': f'Model error: {e}'} def create_prediction_chart(data, predictions): if not len(predictions['values']): return go.Figure() fig = go.Figure() fig.add_trace(go.Scatter(x=data.index[-60:], y=data['Close'].values[-60:], name='Historical Price', line=dict(color='blue', width=2))) fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='AI Prediction', line=dict(color='red', width=2, dash='dash'))) pred_std = np.std(predictions['values']) upper_band = predictions['values'] + (pred_std * 1.96) lower_band = predictions['values'] - (pred_std * 1.96) fig.add_trace(go.Scatter(x=predictions['dates'], y=upper_band, name='Upper Band', line=dict(color='lightcoral', width=1))) fig.add_trace(go.Scatter(x=predictions['dates'], y=lower_band, name='Lower Band', line=dict(color='lightcoral', width=1), fill='tonexty', fillcolor='rgba(255,182,193,0.2)')) fig.update_layout(title=f'Price Prediction - Next {len(predictions["dates"])} Days', xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=500) return fig def create_price_chart(data, indicators): fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05) fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1) fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True) return fig def create_technical_chart(data, indicators): fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis')) fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1) fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2) fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1) fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2) fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2) fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2) fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified') return fig