Spaces:
Runtime error
Runtime error
| import torch | |
| from PIL import Image | |
| # from strhub.data.module import SceneTextDataModule | |
| from torchvision import transforms as T | |
| import gradio as gr | |
| # Load model and image transforms | |
| parseq = torch.hub.load('baudm/parseq', 'parseq', pretrained=True).eval() | |
| # img_transform = SceneTextDataModule.get_transform(parseq.hparams.img_size) | |
| transform = T.Compose([ | |
| T.Resize(parseq.hparams.img_size, T.InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(0.5, 0.5) | |
| ]) | |
| def infer(inps): | |
| img = inps.convert('RGB') | |
| # Preprocess. Model expects a batch of images with shape: (B, C, H, W) | |
| img = transform(img).unsqueeze(0) | |
| logits = parseq(img) | |
| pred = logits.softmax(-1) | |
| label, confidence = parseq.tokenizer.decode(pred) | |
| # print('Decoded label = {}'.format(label[0])) | |
| return label[0] | |
| demo = gr.Interface(fn=infer, | |
| inputs=[gr.inputs.Image(type="pil")], | |
| outputs=[gr.outputs.Textbox(label="Output Text")] | |
| ) | |
| demo.launch() |