Spaces:
Runtime error
Runtime error
init
Browse files- app.py +191 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import AutoPipelineForInpainting
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoModelForCausalLM,
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
BlipForConditionalGeneration,
|
| 9 |
+
BlipProcessor,
|
| 10 |
+
OwlViTForObjectDetection,
|
| 11 |
+
OwlViTProcessor,
|
| 12 |
+
SamModel,
|
| 13 |
+
SamProcessor,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def delete_model(model):
|
| 18 |
+
model.to("cpu")
|
| 19 |
+
del model
|
| 20 |
+
torch.cuda.empty_cache()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def run_language_model(edit_prompt, device):
|
| 24 |
+
language_model_id = "Qwen/Qwen1.5-0.5B-Chat"
|
| 25 |
+
language_model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
language_model_id, device_map="auto"
|
| 27 |
+
)
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(language_model_id)
|
| 29 |
+
messages = [
|
| 30 |
+
{
|
| 31 |
+
"role": "system",
|
| 32 |
+
"content": "Follow the examples and return the expected output",
|
| 33 |
+
},
|
| 34 |
+
{"role": "user", "content": "swap mountain and lion"}, # example 1
|
| 35 |
+
{"role": "assistant", "content": "mountain, lion"}, # example 1
|
| 36 |
+
{"role": "user", "content": "change the dog with cat"}, # example 2
|
| 37 |
+
{"role": "assistant", "content": "dog, cat"}, # example 2
|
| 38 |
+
{"role": "user", "content": "replace the human with a boat"}, # example 3
|
| 39 |
+
{"role": "assistant", "content": "human, boat"}, # example 3
|
| 40 |
+
{"role": "user", "content": edit_prompt},
|
| 41 |
+
]
|
| 42 |
+
text = tokenizer.apply_chat_template(
|
| 43 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 44 |
+
)
|
| 45 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
| 46 |
+
generated_ids = language_model.generate(model_inputs.input_ids, max_new_tokens=512)
|
| 47 |
+
generated_ids = [
|
| 48 |
+
output_ids[len(input_ids) :]
|
| 49 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 50 |
+
]
|
| 51 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 52 |
+
to_replace, replace_with = response.split(", ")
|
| 53 |
+
|
| 54 |
+
delete_model(language_model)
|
| 55 |
+
return (to_replace, replace_with)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def run_image_captioner(image, device):
|
| 59 |
+
caption_model_id = "Salesforce/blip-image-captioning-base"
|
| 60 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_id).to(
|
| 61 |
+
device
|
| 62 |
+
)
|
| 63 |
+
caption_processor = BlipProcessor.from_pretrained(caption_model_id)
|
| 64 |
+
inputs = caption_processor(image, return_tensors="pt").to(device)
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
outputs = caption_model.generate(**inputs, max_new_tokens=200)
|
| 67 |
+
caption = caption_processor.decode(outputs[0], skip_special_tokens=True)
|
| 68 |
+
|
| 69 |
+
delete_model(caption_model)
|
| 70 |
+
return caption
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def run_segmentation(image, object_to_segment, device):
|
| 74 |
+
# OWL-ViT for object detection
|
| 75 |
+
owl_vit_model_id = "google/owlvit-base-patch32"
|
| 76 |
+
processor = OwlViTProcessor.from_pretrained(owl_vit_model_id)
|
| 77 |
+
od_model = OwlViTForObjectDetection.from_pretrained(owl_vit_model_id).to(device)
|
| 78 |
+
text_queries = [object_to_segment]
|
| 79 |
+
inputs = processor(text=text_queries, images=image, return_tensors="pt").to(device)
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
outputs = od_model(**inputs)
|
| 82 |
+
target_sizes = torch.tensor([image.size]).to(device)
|
| 83 |
+
results = processor.post_process_object_detection(
|
| 84 |
+
outputs, threshold=0.1, target_sizes=target_sizes
|
| 85 |
+
)[0]
|
| 86 |
+
|
| 87 |
+
boxes = results["boxes"].tolist()
|
| 88 |
+
|
| 89 |
+
delete_model(od_model)
|
| 90 |
+
|
| 91 |
+
# SAM for image segmentation
|
| 92 |
+
sam_model_id = "facebook/sam-vit-base"
|
| 93 |
+
seg_model = SamModel.from_pretrained(sam_model_id).to(device)
|
| 94 |
+
processor = SamProcessor.from_pretrained(sam_model_id)
|
| 95 |
+
input_boxes = [boxes]
|
| 96 |
+
inputs = processor(image, input_boxes=input_boxes, return_tensors="pt").to(device)
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = seg_model(**inputs)
|
| 99 |
+
masks = processor.image_processor.post_process_masks(
|
| 100 |
+
outputs.pred_masks.cpu(),
|
| 101 |
+
inputs["original_sizes"].cpu(),
|
| 102 |
+
inputs["reshaped_input_sizes"].cpu(),
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
delete_model(seg_model)
|
| 106 |
+
return masks
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def run_inpainting(image, replaced_caption, masks, device):
|
| 110 |
+
pipeline = AutoPipelineForInpainting.from_pretrained(
|
| 111 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 112 |
+
torch_dtype=torch.float16,
|
| 113 |
+
variant="fp16",
|
| 114 |
+
).to(device)
|
| 115 |
+
|
| 116 |
+
prompt = replaced_caption
|
| 117 |
+
negative_prompt = """lowres, bad anatomy, bad hands,
|
| 118 |
+
text, error, missing fingers, extra digit, fewer digits,
|
| 119 |
+
cropped, worst quality, low quality"""
|
| 120 |
+
|
| 121 |
+
output = pipeline(
|
| 122 |
+
prompt=prompt,
|
| 123 |
+
image=image,
|
| 124 |
+
mask_image=Image.fromarray(masks[0][0][0, :, :].numpy()),
|
| 125 |
+
negative_prompt=negative_prompt,
|
| 126 |
+
guidance_scale=7.5,
|
| 127 |
+
strength=0.6,
|
| 128 |
+
).images[0]
|
| 129 |
+
|
| 130 |
+
delete_model(pipeline)
|
| 131 |
+
return output
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def run_open_gen_fill(image, edit_prompt):
|
| 135 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 136 |
+
|
| 137 |
+
# Resize the image to (512, 512)
|
| 138 |
+
image = image.resize((512, 512))
|
| 139 |
+
|
| 140 |
+
# Run the langauge model to extract the objects to be swapped from
|
| 141 |
+
# the edit prompt
|
| 142 |
+
to_replace, replace_with = run_language_model(
|
| 143 |
+
edit_prompt=edit_prompt, device=device
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
# Caption the input image
|
| 147 |
+
caption = run_image_captioner(image, device=device)
|
| 148 |
+
|
| 149 |
+
# Replace the object in the caption with the new object
|
| 150 |
+
replaced_caption = caption.replace(to_replace, replace_with)
|
| 151 |
+
|
| 152 |
+
# Segment the `to_replace` object from the input image
|
| 153 |
+
masks = run_segmentation(image, to_replace, device=device)
|
| 154 |
+
|
| 155 |
+
# Diffusion pipeline for inpainting
|
| 156 |
+
return run_inpainting(
|
| 157 |
+
image=image, replaced_caption=replaced_caption, masks=masks, device=device
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def setup_gradio_interface():
|
| 162 |
+
block = gr.Blocks()
|
| 163 |
+
|
| 164 |
+
with block:
|
| 165 |
+
gr.Markdown("<h1><center>Open Generative Fill<h1><center>")
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
input_image_placeholder = gr.Image(type="pil", label="Input Image")
|
| 170 |
+
edit_prompt_placeholder = gr.Textbox(label="Enter the editing prompt")
|
| 171 |
+
run_button_placeholder = gr.Button(value="Run")
|
| 172 |
+
|
| 173 |
+
with gr.Column():
|
| 174 |
+
output_image_placeholder = gr.Image(type="pil", label="Output Image")
|
| 175 |
+
|
| 176 |
+
run_button_placeholder.click(
|
| 177 |
+
fn=lambda image, edit_prompt: run_open_gen_fill(
|
| 178 |
+
image=image,
|
| 179 |
+
edit_prompt=edit_prompt,
|
| 180 |
+
),
|
| 181 |
+
inputs=[input_image_placeholder, edit_prompt_placeholder],
|
| 182 |
+
outputs=[output_image_placeholder],
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return block
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
if __name__ == "__main__":
|
| 189 |
+
gradio_interface = setup_gradio_interface()
|
| 190 |
+
gradio_interface.queue(max_size=5)
|
| 191 |
+
gradio_interface.launch(share=False, show_api=False, show_error=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.18.0
|
| 2 |
+
accelerate==0.27.0
|
| 3 |
+
diffusers==0.26.2
|
| 4 |
+
transformers==4.37.2
|