File size: 22,254 Bytes
6024b7c fa07da2 6024b7c b77cb84 9233e8b dcf55ea cbd8177 20ed309 b77cb84 fa07da2 cbd8177 0c194f3 6fc2c2d 5c22f32 cbd8177 fa07da2 9233e8b fa07da2 20ed309 0c194f3 fa07da2 20ed309 9233e8b 20ed309 9233e8b 20ed309 cbd8177 fa07da2 0c194f3 6024b7c 6f974a3 cbd8177 0c194f3 1d9ac14 9233e8b 1d9ac14 9638dbd 6024b7c 20ed309 6024b7c 9638dbd 20ed309 9638dbd 20ed309 9638dbd 6024b7c 9638dbd 6024b7c 20ed309 b2070e0 20ed309 b77cb84 20ed309 b77cb84 b2070e0 b77cb84 20ed309 b77cb84 20ed309 b77cb84 c2e306f b77cb84 b2070e0 20ed309 b77cb84 20ed309 b2070e0 20ed309 b1db5fd 20ed309 6024b7c 1ce3151 cbd8177 20ed309 6024b7c baeca97 43bd1fe 1d9ac14 baeca97 6024b7c 6fc2c2d 6024b7c 9638dbd c2e306f 6024b7c 9638dbd e9ed1a8 6fc2c2d 0c194f3 baeca97 0c194f3 fa07da2 20ed309 baeca97 fa07da2 cbd8177 baeca97 6fc2c2d b77cb84 6fc2c2d 0c194f3 fa07da2 b77cb84 fa07da2 cbd8177 b77cb84 fa07da2 0c194f3 6024b7c 9638dbd b77cb84 baeca97 b77cb84 20ed309 b77cb84 20ed309 6fc2c2d b77cb84 fa07da2 b77cb84 20ed309 e9ed1a8 20ed309 b77cb84 6fc2c2d 20ed309 b77cb84 b2070e0 6fc2c2d b2070e0 b77cb84 dcf55ea 20ed309 b2070e0 dcf55ea 20ed309 b77cb84 baeca97 b77cb84 20ed309 b77cb84 20ed309 960994d b77cb84 fa07da2 6024b7c cbd8177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import gradio as gr
from gradio_leaderboard import Leaderboard
from gradio.themes.utils import sizes
import pandas as pd
from evaluate import submit_data, evaluate_data
from utils import (
make_tag_clickable,
make_user_clickable,
fetch_dataset_df,
map_metric_to_stats,
)
from datasets import load_dataset
import tempfile
from loguru import logger
from about import ENDPOINTS, LB_COLS, LB_AVG, LB_DTYPES
ALL_EPS = ['Average'] + ENDPOINTS
def build_leaderboard(df_results):
logger.info("Rebuilding leaderboard data...")
per_ep = {}
for ep in ALL_EPS:
df = df_results[df_results["Endpoint"] == ep].copy()
if df is None:
print(f"[refresh] {ep} returned None; using empty DF")
if df.empty:
per_ep[ep] = pd.DataFrame(columns=LB_COLS) # Empty df
continue
# Make user and model details clickable if it's a huggingface user
df['user'] = df.apply(
lambda row: make_user_clickable(row['user']) if not row['anonymous'] else row['user'],
axis=1).astype(str)
df['model details'] = df['model_report'].apply(lambda x: make_tag_clickable(x)).astype(str)
if ep == "Average":
# MA-RAE is the average of the RAE per endpoint
df = df.rename(columns={"mean_RAE": "mean_MA-RAE",
"std_RAE": "std_MA-RAE"})
sorted_df = df.sort_values(by='mean_MA-RAE', ascending=True, kind="stable")
sorted_df = map_metric_to_stats(sorted_df, average=True)
per_ep[ep] = sorted_df[LB_AVG]
else:
sorted_df = df.sort_values(by="mean_MAE", ascending=True, kind="stable")
sorted_df = map_metric_to_stats(sorted_df)
per_ep[ep] = sorted_df[LB_COLS]
logger.info("Finished rebuilding leaderboard data.")
return per_ep
# Initialize global dataframe
current_df = fetch_dataset_df()
def gradio_interface():
with gr.Blocks(title="OpenADMET ADMET Challenge", fill_height=False,
theme=gr.themes.Default(text_size=sizes.text_lg)) as demo:
timer = gr.Timer(30) # Run every 30 seconds when page is focused
data_version = gr.State(0) # Track data changes
def update_current_dataframe(v):
global current_df
new_df = fetch_dataset_df()
if not current_df.equals(new_df):
current_df = new_df
return v + 1
return v
timer.tick(fn=update_current_dataframe, inputs=[data_version], outputs=data_version)
### Header
with gr.Row():
with gr.Column(scale=7): # bigger text area
gr.Markdown("""
## Welcome to the OpenADMET + ExpansionRx Blind Challenge!
Your task is to develop and submit predictive models for key ADMET properties on a blinded test set of real world drug discovery data π§βπ¬
Go to the **Leaderboard** to check out how the challenge is going.
To participate, head out to the **Submit** tab and upload your results as a `CSV` file.
**The challenge is not yet open for submissions. Please stay tuned for the official launch date!**
"""
)
with gr.Column(scale=2): # smaller side column for logo
gr.Image(
value="./_static/challenge_logo.png",
show_label=False,
show_download_button=False,
width="5vw", # Take up the width of the column (2/8 = 1/4)
)
# --- Welcome markdown message ---
welcome_md = """
# π OpenADMET + ExpansionRx
## Computational Blind Challenge in ADMET
This challenge is a community-driven initiative to benchmark predictive models for ADMET properties in drug discovery,
hosted by **OpenADMET** in collaboration with **ExpansionRx**.
## Why are ADMET properties important in drug discovery?
Small molecules continue to be the bricks and mortar of drug discovery globally, accounting for ~75% of FDA approvals over the last decade.
Oral bioavailability, easily tunable properties, modulation of a wide range of mechanisms, and ease of manufacturing make small molecules highly attractive as therapeutic agents.
Moreover, emerging small molecule modalities such as degraders, expression modulators, molecular glues, and antibody-drug conjugates (to name a few) have vastly expanded what we thought small molecules were capable of.
It is fairly difficult to predict the lifetime and distribution of small molecules within the body. Additionally,
interaction with off-targets can cause safety issues and toxicity. Collectively these *Absorption*, *Distribution*, *Metabolism*, *Excretion*, *Toxicology*--or **ADMET**--properties
sit in the middle of the assay cascade and can make or break preclinical candidate molecules.
**OpenADMET** aims to address these challenges through an open science effort to build predictive models of ADMET properties by characterizing the proteins and mechanisms
that give rise to these properties through integrated structural biology, high throughput experimentation and integrative computational models.
Read more about our strategy to transform drug discovery on our [website](https://openadmet.org/community/blogs/whatisopenadmet/).
Critical to our mission is developing open datasets and running community blind challenges to assess the current state of the art in ADMET modeling.
Building on the sucess of the recent [ASAP-Polaris-OpenADMET blind challenge](https://chemrxiv.org/engage/chemrxiv/article-details/68ac00d1728bf9025e22fe45) in computational methods for drug discovery,
we bring you a brand new challenge in collaboration with **ExpansionRx**. During a recent series of drug discovery campaigns for RNA mediated diseases,
ExpansionRX collected a variety of ADMET data for off-targets and properties of interest, which they are generously sharing with the community for this challenge.
## π§ͺ The Challenge
Participants will be tasked with solving real-world ADMET prediction problems ExpansionRx faced during lead optimization.
Specifically, you will be asked to predict the ADMET properties of late-stage molecules based on earlier-stage data from the same campaigns.
For this challenge we selected nine (9) crucial endpoints for the community to predict:
- LogD
- Kinetic Solubility **KSOL**: uM
- Mouse Liver Microsomal (**MLM**) *CLint*: mL/min/kg
- Human Liver Microsomal (**HLM**) *Clint*: mL/min/kg
- Caco-2 Efflux Ratio
- Caco-2 Papp A>B (10^-6 cm/s)
- Mouse Plasma Protein Binding (**MPPB**): % Unbound
- Mouse Brain Protein Binding (**MBPB**): % Unbound
- Mouse Gastrocnemius Muscle Binding (**MGMB**): % Unbound
Find more information about these endpoints on our [blog](https://openadmet.org/community/blogs/challenge_announcement2/).
## β
How to Participate
1. **Register**: Create an account with Hugging Face.
2. **Download the Public Dataset**: Download the ExpansionRx dataset.
3. **Train Your Model**: Use the provided training data for each ADMET property of your choice.
4. **Submit Predictions**: Follow the instructions in the *Submit* tab to upload your predictions.
5. Join the discussion on the [Challenge Discord](https://discord.gg/MY5cEFHH3D)!
## π Data:
The training set contains the following parameters:
| Column | Unit | Type | Description |
|:---------------------------- |:----------: |:--------: |:----------------------------------------------|
| Molecule Name | | str | Identifier for the molecule |
| Smiles | | str | Text representation of the 2D molecular structure |
| LogD | | float | LogD calculation |
| KSol | uM | float | Kinetic Solubility |
| MLM CLint | mL/min/kg | float | Mouse Liver Microsomal |
| HLM CLint | mL/min/kg | float | Human Liver Microsomal |
| Caco-2 Permeability Efflux | | float | Caco-2 Permeability Efflux |
| Caco-2 Permeability Papp A>B | 10^-6 cm/s | float | Caco-2 Permeability Papp A>B |
| MPPB | % Unbound | float | Mouse Plasma Protein Binding |
| MBPB | % Unbound | float | Mouse Brain Protein Binding |
| MGMB. | % Unbound | float | Mouse Gastrocnemius Muscle Binding |
You can download the training data from the [Hugging Face dataset](https://huggingface.co/datasets/openadmet/openadmet-challenge-train-data).
The test set will remained blinded until the challenge submission deadline. You will be tasked with predicting the same set of ADMET endpoints for the test set molecules.
## π Evaluation
The challenge will be judged based on the following criteria:
- We welcome submissions of any kind, including machine learning and physics-based approaches. You can also employ pre-training approaches as you see fit,
as well as incorporate data from external sources into your models and submissions.
- In the spirit of open science and open source we would love to see code showing how you created your submission if possible, in the form of a Github Repository.
If not possible due to IP or other constraints you must at a minimum provide a short report written methodology based on the template [here](https://docs.google.com/document/d/1bttGiBQcLiSXFngmzUdEqVchzPhj-hcYLtYMszaOqP8/edit?usp=sharing).
**Make sure your lat submission before the deadline includes a link to a report or to a Github repository.**
- Each participant can submit as many times as they like, up to a limit of once per day. **Only your latest submission will be considered for the final leaderboard.**
- The endpoints will be judged individually by mean absolute error (**MAE**), while an overall leaderboard will be judged by the macro-averaged relative absolute error (**MA-RAE**).
- For endpoints that are not already on a log scale (e.g LogD) they will be transformed to log scale to minimize the impact of outliers on evaluation.
- We will estimate errors on the metrics using bootstrapping and use the statistical testing workflow outlined in [this paper](https://chemrxiv.org/engage/chemrxiv/article-details/672a91bd7be152b1d01a926b) to determine if model performance is statistically distinct.
π
**Timeline**:
- **September 16:** Challenge announcement
- **October 10:** Second announcement and sample data release
- **October 27:** Challenge starts
- **October-November:** Online Q&A sessions and support via the Discord channel
- **January 19, 2026:** Submission closes
- **January 26, 2026:** Winners announced
---
"""
# --- Gradio Interface ---
gr.HTML("""
<style>
/* bold only the "Overall" tab label */
#lb_subtabs [role="tab"][aria-controls="all_tab"] {
font-weight: 700 !important;
}
</style>
<style>
#welcome-md table {
width: 60%;
border-collapse: collapse;
font-size: 0.95rem;
line-height: 1.2;
}
#welcome-md th, #welcome-md td {
padding: 6px 10px;
border: 1px solid rgba(0,0,0,0.9);
vertical-align: middle;
}
#welcome-md thead th {
background: var(--panel-background-fill, #f5f5f7);
font-weight: 1000;
}
/* Header shading */
#welcome-md thead th:nth-child(2),
#welcome-md thead th:nth-child(3) {
text-align: center;
}
/* Zebra striping */
#welcome-md tbody tr:nth-child(odd) { background: rgba(0,0,0,0.03); }
#welcome-md tbody tr:hover { background: rgba(0,0,0,0.06); }
/* Align columns */
#welcome-md td:nth-child(2),
#welcome-md td:nth-child(3) { text-align: center; white-space: nowrap; }
</style>
""")
with gr.Tabs(elem_classes="tab-buttons"):
lboard_dict = {}
with gr.TabItem("π About"):
gr.Markdown(welcome_md, elem_id="welcome-md")
with gr.TabItem("π Leaderboard", elem_id="lb_subtabs"):
gr.Markdown("""
View the leaderboard for each ADMET endpoint by selecting the appropiate tab.
**THE RESULTS ON THE LEADERBOARD ARE CURRENTLY PLACEHOLDERS AND DO NOT REPRESENT ACTUAL SUBMISSIONS.**
Actual results will be available once the challenge is open.
""")
# Make separate leaderboards in separate tabs
#per_ep = build_leaderboard()
# Aggregated leaderboard
with gr.TabItem('OVERALL', elem_id="all_tab"):
lboard_dict['Average'] = Leaderboard(
value=build_leaderboard(current_df)['Average'],
datatype=LB_DTYPES,
select_columns=LB_AVG,
search_columns=["user"],
render=True,
every=30,
)
# per-endpoint leaderboard
for endpoint in ENDPOINTS:
with gr.TabItem(endpoint):
lboard_dict[endpoint] = Leaderboard(
value=build_leaderboard(current_df)[endpoint],
datatype=LB_DTYPES,
select_columns=LB_COLS,
search_columns=["user"],
render=True,
every=30,
)
# Auto-refresh
def refresh_if_changed():
per_ep = build_leaderboard(current_df)
#return [gr.update(value=per_ep.get(ep, pd.DataFrame(columns=LB_COLS))) for ep in ALL_EPS]
return [per_ep[ep] for ep in ALL_EPS]
data_version.change(fn=refresh_if_changed, outputs=[lboard_dict[ep] for ep in ALL_EPS])
with gr.TabItem("βοΈ Submit"):
gr.Markdown(
"""
# ADMET Endpoints Submission
Upload your prediction files here as a csv file.
"""
)
filename = gr.State(value=None)
eval_state = gr.State(value=None)
user_state = gr.State(value=None)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Participant Information
To participate, **we require a Hugging Face username**, which will be used to track multiple submissions.
Your username will be displayed on the leaderboard, unless you check the *anonymous* box. If you want to remain anonymous, please provide an alias to be used for the leaderboard (we'll keep the username hidden).
If you wish to be included in Challenge discussions, please provide your Discord username and email.
If you wish to be included in a future publication with the Challenge results, please provide your name and affiliation (and check the box below).
We also ask you to provide a link to a report decribing your method. While not mandatory at the time of participation,
you need to submit the link before the challenge deadline in order to be considered for the final leaderboard.
"""
)
username_input = gr.Textbox(
label="Username",
placeholder="Enter your Hugging Face username",
# info="This will be displayed on the leaderboard."
)
user_alias = gr.Textbox(
label="Optional Alias",
placeholder="Enter an identifying alias for the leaderboard if you wish to remain anonymous",
# info="This will be displayed on the leaderboard."
)
anon_checkbox = gr.Checkbox(
label="I want to submit anonymously",
info="If checked, your username will be replaced with the given *alias* on the leaderboard.",
value=False,
)
with gr.Column():
# Info to track participant, that will not be displayed publicly
participant_name = gr.Textbox(
label="Participant Name",
placeholder="Enter your name (optional)",
info="This will not be displayed on the leaderboard but will be used for tracking participation."
)
discord_username= gr.Textbox(
label="Discord Username",
placeholder="Enter your Discord username (optional)",
info="Enter the username you will use for the Discord channel (if you are planning to engage in the discussion)."
)
email = gr.Textbox(
label="Email",
placeholder="Enter your email (optional)",
)
affiliation = gr.Textbox(
label="Affiliation",
placeholder="Enter your school/company affiliation (optional)",
)
model_tag = gr.Textbox(
label="Model Report",
placeholder="Link to a report describing your method (optional)",
)
paper_checkbox = gr.Checkbox(
label="I want to be included in a future publication detailing the Challenge results",
value=False,
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## Submission Instructions
After training your model with the [ExpansionRx trainining set](https://huggingface.co/datasets/openadmet/openadmet-challenge-train-data),
please upload a single CSV file containing your predictions for all compounds in the test set.
Only your latest submission will be considered.
Download a CSV file with the compounds in the test set here:
"""
)
download_btn = gr.DownloadButton(
label="π₯ Download Test Set Compounds",
value="./data/expansion_data_test_blinded.csv",
variant="secondary",
)
with gr.Column():
predictions_file = gr.File(label="Single file with ADMET predictions (.csv)",
file_types=[".csv"],
file_count="single",)
username_input.change(
fn=lambda x: x if x.strip() else None,
inputs=username_input,
outputs=user_state
)
submit_btn = gr.Button("π€ Submit Predictions")
message = gr.Textbox(label="Status", lines=1, visible=False)
submit_btn.click(
submit_data,
inputs=[predictions_file,
user_state,
participant_name,
discord_username,
email,
affiliation,
model_tag,
user_alias,
anon_checkbox,
paper_checkbox],
outputs=[message, filename],
).success(
fn=lambda m: gr.update(value=m, visible=True),
inputs=[message],
outputs=[message],
).success(
fn=evaluate_data,
inputs=[filename],
outputs=[eval_state]
)
return demo
if __name__ == "__main__":
logger.info("Starting Gradio app...")
gradio_interface().launch(ssr_mode=False)
logger.info("Gradio app closed.") |