Spaces:
Sleeping
Sleeping
| import cv2 as cv | |
| import numpy as np | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from yunet import YuNet | |
| from ediffiqa import eDifFIQA | |
| # Download face detection model (YuNet) | |
| model_path_yunet = hf_hub_download( | |
| repo_id="opencv/face_detection_yunet", | |
| filename="face_detection_yunet_2023mar.onnx" | |
| ) | |
| # Download face quality assessment model (eDifFIQA Tiny) | |
| model_path_quality = hf_hub_download( | |
| repo_id="opencv/face_image_quality_assessment_ediffiqa", | |
| filename="ediffiqa_tiny_jun2024.onnx" | |
| ) | |
| # Backend and target | |
| backend_id = cv.dnn.DNN_BACKEND_OPENCV | |
| target_id = cv.dnn.DNN_TARGET_CPU | |
| # Initialize YuNet for face detection | |
| face_detector = YuNet( | |
| modelPath=model_path_yunet, | |
| inputSize=[320, 320], | |
| confThreshold=0.9, | |
| nmsThreshold=0.3, | |
| topK=5000, | |
| backendId=backend_id, | |
| targetId=target_id | |
| ) | |
| # Initialize eDifFIQA for quality assessment | |
| quality_model = eDifFIQA( | |
| modelPath=model_path_quality, | |
| inputSize=[112, 112] | |
| ) | |
| quality_model.setBackendAndTarget( | |
| backendId=backend_id, | |
| targetId=target_id | |
| ) | |
| REFERENCE_FACIAL_POINTS = np.array([ | |
| [38.2946 , 51.6963 ], | |
| [73.5318 , 51.5014 ], | |
| [56.0252 , 71.7366 ], | |
| [41.5493 , 92.3655 ], | |
| [70.729904, 92.2041 ] | |
| ], dtype=np.float32) | |
| def align_image(image, detection_data): | |
| src_pts = np.float32(detection_data[0][4:-1]).reshape(5, 2) | |
| tfm, _ = cv.estimateAffinePartial2D(src_pts, REFERENCE_FACIAL_POINTS, method=cv.LMEDS) | |
| face_img = cv.warpAffine(image, tfm, (112, 112)) | |
| return face_img | |
| def assess_face_quality(input_image): | |
| bgr_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) | |
| h, w, _ = bgr_image.shape | |
| face_detector.setInputSize([w, h]) | |
| detections = face_detector.infer(bgr_image) | |
| if detections is None or len(detections) == 0: | |
| return "No face detected.", input_image | |
| aligned_face = align_image(bgr_image, detections) | |
| score = np.squeeze(quality_model.infer(aligned_face)).item() | |
| output_image = aligned_face.copy() | |
| cv.putText(output_image, f"{score:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, 0.8, (0, 0, 255), 2) | |
| output_image = cv.cvtColor(output_image, cv.COLOR_BGR2RGB) | |
| return f"Quality Score: {score:.3f}", output_image | |
| # Gradio Interface | |
| with gr.Blocks(css='''.example * { | |
| font-style: italic; | |
| font-size: 18px !important; | |
| color: #0ea5e9 !important; | |
| }''') as demo: | |
| gr.Markdown("### Face Image Quality Assessment (eDifFIQA + YuNet)") | |
| gr.Markdown("Upload a face image. The app detects and aligns the face, then evaluates image quality using the eDifFIQA model.") | |
| with gr.Row(): | |
| input_image = gr.Image(type="numpy", label="Upload Face Image") | |
| with gr.Column(): | |
| quality_score = gr.Text(label="Quality Score") | |
| aligned_face = gr.Image(type="numpy", label="Aligned Face with Score") | |
| # Clear output when new image is uploaded | |
| input_image.change(fn=lambda: ("", None), outputs=[quality_score, aligned_face]) | |
| with gr.Row(): | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| clear_btn = gr.Button("Clear") | |
| submit_btn.click(fn=assess_face_quality, inputs=input_image, outputs=[quality_score, aligned_face]) | |
| clear_btn.click(fn=lambda: (None, "", None), outputs=[input_image, quality_score, aligned_face]) | |
| gr.Markdown("Click on any example to try it.", elem_classes=["example"]) | |
| gr.Examples( | |
| examples=[ | |
| ["examples/lena.jpg"], | |
| ["examples/gray_face.png"] | |
| ], | |
| inputs=input_image | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |