v0
Browse files- README.md +40 -0
- app.py +214 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -12,3 +12,43 @@ short_description: Meta analysis about trends on trending repos
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
# SQL Dataset Visualizer on Hugging Face Spaces
|
| 17 |
+
|
| 18 |
+
This application allows you to query Hugging Face datasets using SQL and visualize the results using Plotly.
|
| 19 |
+
|
| 20 |
+
## Setup
|
| 21 |
+
1. Install dependencies:
|
| 22 |
+
```bash
|
| 23 |
+
pip install -r requirements.txt
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
2. Set up authentication:
|
| 27 |
+
- Get your Hugging Face token from https://huggingface.co/settings/tokens
|
| 28 |
+
- For local development, set the environment variable:
|
| 29 |
+
```bash
|
| 30 |
+
export HF_TOKEN=your_token_here
|
| 31 |
+
```
|
| 32 |
+
- For Hugging Face Spaces, add the token in the Space settings:
|
| 33 |
+
- Go to your Space settings
|
| 34 |
+
- Add a new secret with key `HF_TOKEN` and your token as the value
|
| 35 |
+
|
| 36 |
+
## Run Locally
|
| 37 |
+
```bash
|
| 38 |
+
python app.py
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
## Deploy to Hugging Face Spaces
|
| 42 |
+
1. Push these files to a new Python Space on HF
|
| 43 |
+
2. Add your HF_TOKEN in the Space settings
|
| 44 |
+
3. The Space will automatically deploy with the token securely stored
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
1. Enter your SQL query in the text box
|
| 48 |
+
2. The results will be automatically visualized as a bar chart
|
| 49 |
+
3. If there's an error in your query, it will be displayed as text
|
| 50 |
+
|
| 51 |
+
## Security Note
|
| 52 |
+
- Never commit your HF_TOKEN to version control
|
| 53 |
+
- Always use environment variables or Space secrets for authentication
|
| 54 |
+
- The token is used to access private datasets and authenticate API requests
|
app.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import duckdb
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns # Import Seaborn
|
| 6 |
+
import plotly.express as px # Added for Plotly
|
| 7 |
+
import plotly.graph_objects as go # Added for Plotly error figure
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import os
|
| 10 |
+
from huggingface_hub import login
|
| 11 |
+
from datetime import datetime, timedelta
|
| 12 |
+
import sys # Added for error logging
|
| 13 |
+
|
| 14 |
+
# Get token from environment variable
|
| 15 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 16 |
+
if not HF_TOKEN:
|
| 17 |
+
raise ValueError("Please set the HF_TOKEN environment variable")
|
| 18 |
+
|
| 19 |
+
# Login to Hugging Face
|
| 20 |
+
login(token=HF_TOKEN)
|
| 21 |
+
|
| 22 |
+
# Apply Seaborn theme and context globally
|
| 23 |
+
sns.set_theme(style="whitegrid")
|
| 24 |
+
sns.set_context("notebook")
|
| 25 |
+
|
| 26 |
+
# Load dataset once at startup
|
| 27 |
+
try:
|
| 28 |
+
dataset = load_dataset("reach-vb/trending-repos", split="models")
|
| 29 |
+
df = dataset.to_pandas()
|
| 30 |
+
# Register the pandas DataFrame as a DuckDB table named 'models'
|
| 31 |
+
# This allows the SQL query to use 'FROM models'
|
| 32 |
+
duckdb.register('models', df)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"Error loading dataset: {e}")
|
| 35 |
+
raise
|
| 36 |
+
|
| 37 |
+
def get_retention_data(start_date: str, end_date: str) -> pd.DataFrame:
|
| 38 |
+
try:
|
| 39 |
+
# The input start_date and end_date are already strings in YYYY-MM-DD format.
|
| 40 |
+
# We can pass them directly to DuckDB if the SQL column is DATE.
|
| 41 |
+
|
| 42 |
+
query = """
|
| 43 |
+
WITH model_presence AS (
|
| 44 |
+
SELECT
|
| 45 |
+
id AS model_id,
|
| 46 |
+
collected_at::DATE AS collection_day
|
| 47 |
+
FROM models
|
| 48 |
+
),
|
| 49 |
+
daily_model_counts AS (
|
| 50 |
+
SELECT
|
| 51 |
+
collection_day,
|
| 52 |
+
COUNT(*) AS total_models_today
|
| 53 |
+
FROM model_presence
|
| 54 |
+
GROUP BY collection_day
|
| 55 |
+
),
|
| 56 |
+
retained_models AS (
|
| 57 |
+
SELECT
|
| 58 |
+
a.collection_day,
|
| 59 |
+
COUNT(*) AS previously_existed_count
|
| 60 |
+
FROM model_presence a
|
| 61 |
+
JOIN model_presence b
|
| 62 |
+
ON a.model_id = b.model_id
|
| 63 |
+
AND a.collection_day = b.collection_day + INTERVAL '1 day'
|
| 64 |
+
GROUP BY a.collection_day
|
| 65 |
+
)
|
| 66 |
+
SELECT
|
| 67 |
+
d.collection_day,
|
| 68 |
+
d.total_models_today,
|
| 69 |
+
COALESCE(r.previously_existed_count, 0) AS carried_over_models,
|
| 70 |
+
CASE
|
| 71 |
+
WHEN d.total_models_today = 0 THEN NULL
|
| 72 |
+
ELSE ROUND(COALESCE(r.previously_existed_count, 0) * 100.0 / d.total_models_today, 2)
|
| 73 |
+
END AS percent_retained
|
| 74 |
+
FROM daily_model_counts d
|
| 75 |
+
LEFT JOIN retained_models r ON d.collection_day = r.collection_day
|
| 76 |
+
WHERE d.collection_day BETWEEN ? AND ?
|
| 77 |
+
ORDER BY d.collection_day
|
| 78 |
+
"""
|
| 79 |
+
# Pass the string dates directly to the query, using the 'params' keyword argument.
|
| 80 |
+
result = duckdb.query(query, params=[start_date, end_date]).to_df()
|
| 81 |
+
print("SQL Query Result:") # Log the result
|
| 82 |
+
print(result) # Log the result
|
| 83 |
+
return result
|
| 84 |
+
except Exception as e:
|
| 85 |
+
# Log the error to standard error
|
| 86 |
+
print(f"Error in get_retention_data: {e}", file=sys.stderr)
|
| 87 |
+
# Return empty DataFrame with error message
|
| 88 |
+
return pd.DataFrame({"Error": [str(e)]})
|
| 89 |
+
|
| 90 |
+
def plot_retention_data(dataframe: pd.DataFrame):
|
| 91 |
+
print("DataFrame received by plot_retention_data (first 5 rows):")
|
| 92 |
+
print(dataframe.head())
|
| 93 |
+
print("\nData types in plot_retention_data before any conversion:")
|
| 94 |
+
print(dataframe.dtypes)
|
| 95 |
+
|
| 96 |
+
# Check if the DataFrame itself is an error signal from the previous function
|
| 97 |
+
if "Error" in dataframe.columns and not dataframe.empty:
|
| 98 |
+
error_message = dataframe['Error'].iloc[0]
|
| 99 |
+
print(f"Error DataFrame received: {error_message}", file=sys.stderr)
|
| 100 |
+
fig = go.Figure()
|
| 101 |
+
fig.add_annotation(
|
| 102 |
+
text=f"Error from data generation: {error_message}",
|
| 103 |
+
xref="paper", yref="paper",
|
| 104 |
+
x=0.5, y=0.5, showarrow=False,
|
| 105 |
+
font=dict(size=16)
|
| 106 |
+
)
|
| 107 |
+
return fig
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
# Ensure 'percent_retained' column exists
|
| 111 |
+
if 'percent_retained' not in dataframe.columns:
|
| 112 |
+
raise ValueError("'percent_retained' column is missing from the DataFrame.")
|
| 113 |
+
|
| 114 |
+
if 'collection_day' not in dataframe.columns:
|
| 115 |
+
raise ValueError("'collection_day' column is missing from the DataFrame.")
|
| 116 |
+
|
| 117 |
+
# Explicitly convert 'percent_retained' to numeric.
|
| 118 |
+
# Ensure 'percent_retained' is numeric and 'collection_day' is datetime for Plotly
|
| 119 |
+
dataframe['percent_retained'] = pd.to_numeric(dataframe['percent_retained'], errors='coerce')
|
| 120 |
+
dataframe['collection_day'] = pd.to_datetime(dataframe['collection_day'])
|
| 121 |
+
|
| 122 |
+
# Drop rows where 'percent_retained' could not be converted (became NaT)
|
| 123 |
+
dataframe.dropna(subset=['percent_retained', 'collection_day'], inplace=True)
|
| 124 |
+
|
| 125 |
+
print("\n'percent_retained' column after pd.to_numeric (first 5 values):")
|
| 126 |
+
print(dataframe['percent_retained'].head())
|
| 127 |
+
print("'percent_retained' dtype after pd.to_numeric:", dataframe['percent_retained'].dtype)
|
| 128 |
+
print("\n'collection_day' column after pd.to_datetime (first 5 values):")
|
| 129 |
+
print(dataframe['collection_day'].head())
|
| 130 |
+
print("'collection_day' dtype after pd.to_datetime:", dataframe['collection_day'].dtype)
|
| 131 |
+
|
| 132 |
+
if dataframe.empty:
|
| 133 |
+
fig = go.Figure()
|
| 134 |
+
fig.add_annotation(
|
| 135 |
+
text="No data available to plot after processing.",
|
| 136 |
+
xref="paper", yref="paper",
|
| 137 |
+
x=0.5, y=0.5, showarrow=False,
|
| 138 |
+
font=dict(size=16)
|
| 139 |
+
)
|
| 140 |
+
return fig
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Create Plotly bar chart
|
| 144 |
+
fig = px.bar(
|
| 145 |
+
dataframe,
|
| 146 |
+
x='collection_day',
|
| 147 |
+
y='percent_retained',
|
| 148 |
+
title='Previous Day Top 200 Trending Model Retention %',
|
| 149 |
+
labels={'collection_day': 'Date', 'percent_retained': 'Retention Rate (%)'},
|
| 150 |
+
text='percent_retained' # Use the column directly for hover/text
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Format the text on bars
|
| 154 |
+
fig.update_traces(
|
| 155 |
+
texttemplate='%{text:.2f}%',
|
| 156 |
+
textposition='inside',
|
| 157 |
+
insidetextanchor='middle', # Anchor text to the middle of the bar
|
| 158 |
+
textfont_color='white',
|
| 159 |
+
textfont_size=10, # Adjusted size for better fit
|
| 160 |
+
hovertemplate='<b>Date</b>: %{x|%Y-%m-%d}<br>' +
|
| 161 |
+
'<b>Retention</b>: %{y:.2f}%<extra></extra>' # Custom hover
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Calculate and plot the average retention line
|
| 165 |
+
if not dataframe['percent_retained'].empty:
|
| 166 |
+
average_retention = dataframe['percent_retained'].mean()
|
| 167 |
+
fig.add_hline(
|
| 168 |
+
y=average_retention,
|
| 169 |
+
line_dash="dash",
|
| 170 |
+
line_color="red",
|
| 171 |
+
annotation_text=f"Average: {average_retention:.2f}%",
|
| 172 |
+
annotation_position="bottom right"
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
fig.update_xaxes(tickangle=45)
|
| 176 |
+
fig.update_layout(
|
| 177 |
+
title_x=0.5, # Center title
|
| 178 |
+
xaxis_title="Date",
|
| 179 |
+
yaxis_title="Retention Rate (%)",
|
| 180 |
+
plot_bgcolor='white', # Set plot background to white like seaborn whitegrid
|
| 181 |
+
bargap=0.2 # Gap between bars of different categories
|
| 182 |
+
)
|
| 183 |
+
return fig
|
| 184 |
+
except Exception as e:
|
| 185 |
+
print(f"Error during plot_retention_data: {e}", file=sys.stderr)
|
| 186 |
+
fig = go.Figure()
|
| 187 |
+
fig.add_annotation(
|
| 188 |
+
text=f"Plotting Error: {str(e)}",
|
| 189 |
+
xref="paper", yref="paper",
|
| 190 |
+
x=0.5, y=0.5, showarrow=False,
|
| 191 |
+
font=dict(size=16)
|
| 192 |
+
)
|
| 193 |
+
return fig
|
| 194 |
+
|
| 195 |
+
def interface_fn(start_date, end_date):
|
| 196 |
+
result = get_retention_data(start_date, end_date)
|
| 197 |
+
return plot_retention_data(result)
|
| 198 |
+
|
| 199 |
+
# Get min and max dates from the dataset
|
| 200 |
+
min_date = datetime.fromisoformat(df['collected_at'].min()).date()
|
| 201 |
+
max_date = datetime.fromisoformat(df['collected_at'].max()).date()
|
| 202 |
+
|
| 203 |
+
iface = gr.Interface(
|
| 204 |
+
fn=interface_fn,
|
| 205 |
+
inputs=[
|
| 206 |
+
gr.Textbox(label="Start Date (YYYY-MM-DD)", value=min_date.strftime("%Y-%m-%d")),
|
| 207 |
+
gr.Textbox(label="End Date (YYYY-MM-DD)", value=max_date.strftime("%Y-%m-%d"))
|
| 208 |
+
],
|
| 209 |
+
outputs=gr.Plotly(label="Model Retention Visualization"),
|
| 210 |
+
title="Model Retention Analysis",
|
| 211 |
+
description="Visualize model retention rates over time. Enter dates in YYYY-MM-DD format."
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
duckdb
|
| 3 |
+
pandas
|
| 4 |
+
seaborn
|
| 5 |
+
matplotlib
|
| 6 |
+
gradio
|