Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,208 Bytes
5a70430 ee5186b 5a70430 ee5186b 5a70430 ee5186b 5a70430 ee5186b 94d22ce ee5186b 94d22ce ee5186b 94d22ce ee5186b 5a70430 bca1c98 5a70430 ee5186b 94d22ce ee5186b 94d22ce ee5186b 94d22ce ee5186b 94d22ce ee5186b 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce ee5186b 5a70430 ee5186b 5a70430 94d22ce 5a70430 ee5186b 5a70430 94d22ce 5a70430 94d22ce 5a70430 ee5186b 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce 5a70430 94d22ce ee5186b 94d22ce ee5186b 94d22ce 5a70430 ee5186b 94d22ce 5a70430 94d22ce 5a70430 94d22ce ee5186b 5a70430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union
import torch
from PIL import Image
import gradio as gr
import spaces
from diffusers import DiffusionPipeline
from huggingface_hub import (
hf_hub_download,
HfFileSystem,
ModelCard,
snapshot_download)
from diffusers.utils import load_image
import requests
from urllib.parse import urlparse
import tempfile
import shutil
import uuid
import zipfile
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load Qwen/Qwen-Image pipeline
dtype = torch.bfloat16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load Qwen model
pipe = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
# Aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472)
}
loras = [
# Sample Qwen-compatible LoRAs
{
"image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png",
"title": "Studio Realism",
"repo": "prithivMLmods/Qwen-Image-Studio-Realism",
"weights": "qwen-studio-realism.safetensors",
"trigger_word": "Studio Realism"
},
{
"image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png",
"title": "Sketch Smudge",
"repo": "prithivMLmods/Qwen-Image-Sketch-Smudge",
"weights": "qwen-sketch-smudge.safetensors",
"trigger_word": "Sketch Smudge"
},
{
"image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png",
"title": "Qwen Anime",
"repo": "prithivMLmods/Qwen-Image-Anime-LoRA",
"weights": "qwen-anime.safetensors",
"trigger_word": "Qwen Anime"
},
{
"image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png",
"title": "Synthetic Face",
"repo": "prithivMLmods/Qwen-Image-Synthetic-Face",
"weights": "qwen-synthetic-face.safetensors",
"trigger_word": "Synthetic Face"
},
{
"image": "https://huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png",
"title": "Fragmented Portraiture",
"repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture",
"weights": "qwen-fragmented-portraiture.safetensors",
"trigger_word": "Fragmented Portraiture"
},
]
def load_lora_opt(pipe, lora_input):
lora_input = lora_input.strip()
if not lora_input:
return
# If it's just an ID like "author/model"
if "/" in lora_input and not lora_input.startswith("http"):
pipe.load_lora_weights(lora_input, adapter_name="default")
return
if lora_input.startswith("http"):
url = lora_input
# Repo page (no blob/resolve)
if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url:
repo_id = urlparse(url).path.strip("/")
pipe.load_lora_weights(repo_id, adapter_name="default")
return
# Blob link → convert to resolve link
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
# Download direct file
tmp_dir = tempfile.mkdtemp()
local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path))
try:
print(f"Downloading LoRA from {url}...")
resp = requests.get(url, stream=True)
resp.raise_for_status()
with open(local_path, "wb") as f:
for chunk in resp.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Saved LoRA to {local_path}")
pipe.load_lora_weights(local_path, adapter_name="default")
finally:
shutil.rmtree(tmp_dir, ignore_errors=True)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
try:
response = requests.get(f"https://huggingface.co/api/models/{link}")
response.raise_for_status()
model_info = response.json()
# Check if it's a Qwen model
if "qwen" not in model_info.get("tags", []):
raise Exception("Not a Qwen LoRA model!")
# Get image if available
image_url = None
if "cardData" in model_info and "widget" in model_info["cardData"]:
if len(model_info["cardData"]["widget"]) > 0:
image_url = model_info["cardData"]["widget"][0].get("output", {}).get("url", None)
# Try to find safetensors file
safetensors_name = None
try:
model_files = requests.get(f"https://huggingface.co/api/models/{link}/tree/main").json()
for file in model_files:
if file.get("path", "").endswith(".safetensors"):
safetensors_name = file["path"]
break
except:
pass
return split_link[1], link, safetensors_name, "trigger_word", image_url
except Exception as e:
print(f"Error getting model info: {e}")
raise Exception(f"Failed to get model info: {e}")
return None, None, None, None, None
def check_custom_model(link):
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
if not title:
raise Exception("Invalid LoRA model")
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if not existing_item_index:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
# Update aspect ratio based on LoRA if it has aspect info
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 928
height = 1664
elif selected_lora["aspect"] == "landscape":
width = 1664
height = 928
else:
width = 1328
height = 1328
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=120)
def generate_qwen(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.0,
randomize_seed: bool = False,
num_inference_steps: int = 50,
num_images: int = 1,
zip_images: bool = False,
lora_input: str = "",
lora_scale: float = 1.0,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
start_time = time.time()
# Clear any existing LoRA adapters
current_adapters = pipe.get_list_adapters()
for adapter in current_adapters:
pipe.delete_adapters(adapter)
pipe.disable_lora()
use_lora = False
if lora_input and lora_input.strip() != "":
load_lora_opt(pipe, lora_input)
pipe.set_adapters(["default"], adapter_weights=[lora_scale])
use_lora = True
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else "",
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
# Clean up adapters
current_adapters = pipe.get_list_adapters()
for adapter in current_adapters:
pipe.delete_adapters(adapter)
pipe.disable_lora()
return image_paths, seed, f"{duration:.2f}", zip_path
@spaces.GPU(duration=120)
def run_lora(
prompt: str,
negative_prompt: str,
use_negative_prompt: bool,
seed: int,
width: int,
height: int,
guidance_scale: float,
randomize_seed: bool,
num_inference_steps: int,
num_images: int,
zip_images: bool,
selected_index: int,
lora_scale: float,
progress=gr.Progress(track_tqdm=True),
):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras[selected_index]
lora_repo = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if trigger_word:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
final_negative_prompt = negative_prompt if use_negative_prompt else ""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return generate_qwen(
prompt=prompt_mash,
negative_prompt=final_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=False, # Already handled
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
lora_input=lora_repo,
lora_scale=lora_scale,
progress=progress,
)
css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
title = gr.HTML("""<h1>Qwen Image LoRA DLC ❤️🔥</h1>""", elem_id="title")
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="Qwen LoRA DLC's",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Qwen-Image-Sketch-Smudge")
gr.Markdown("[Check the list of Qwen LoRA's](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
result = gr.Gallery(label="Generated Images", columns=1, show_label=False, preview=True)
with gr.Row():
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=list(aspect_ratios.keys()),
value="1:1",
)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=48)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(
label="Use negative prompt",
value=True,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="text, watermark, copyright, blurry, low resolution",
)
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=4.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=50)
with gr.Row():
width = gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1328)
height = gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1328)
with gr.Row():
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=5, step=1, value=1)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0)
# Output information
with gr.Row():
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
# Update aspect ratio
def set_dimensions(ar):
w, h = aspect_ratios[ar]
return gr.update(value=w), gr.update(value=h)
aspect_ratio.change(
fn=set_dimensions,
inputs=aspect_ratio,
outputs=[width, height]
)
# Negative prompt visibility
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt
)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
#guidance_scale,
randomize_seed,
steps,
num_images,
zip_images,
selected_index,
lora_scale,
],
outputs=[result, seed_display, generation_time, zip_file]
)
app.queue()
app.launch(share=False, ssr_mode=False, show_error=True) |