Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import copy | |
| import time | |
| import random | |
| import logging | |
| import numpy as np | |
| from typing import Any, Dict, List, Optional, Union | |
| import torch | |
| from PIL import Image | |
| import gradio as gr | |
| import spaces | |
| from diffusers import DiffusionPipeline | |
| from huggingface_hub import ( | |
| hf_hub_download, | |
| HfFileSystem, | |
| ModelCard, | |
| snapshot_download) | |
| from diffusers.utils import load_image | |
| import requests | |
| from urllib.parse import urlparse | |
| import tempfile | |
| import shutil | |
| import uuid | |
| import zipfile | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| # Qwen Image pipeline with live preview capability | |
| def qwen_pipe_call_that_returns_an_iterable_of_images( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 4.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| output_type: Optional[str] = "pil", | |
| ): | |
| height = height or 1024 | |
| width = width or 1024 | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| device = self._execution_device | |
| # Generate intermediate images during the process | |
| for i in range(num_inference_steps): | |
| if i % 5 == 0: # Show progress every 5 steps | |
| # Generate partial result | |
| temp_result = self( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=max(1, i + 1), | |
| num_images_per_prompt=num_images_per_prompt, | |
| generator=generator, | |
| output_type=output_type, | |
| ).images[0] | |
| yield temp_result | |
| torch.cuda.empty_cache() | |
| # Final high-quality result | |
| final_result = self( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=num_images_per_prompt, | |
| generator=generator, | |
| output_type=output_type, | |
| ).images[0] | |
| yield final_result | |
| loras = [ | |
| # Sample Qwen-compatible LoRAs | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Studio-Realism/resolve/main/images/2.png", | |
| "title": "Studio Realism", | |
| "repo": "prithivMLmods/Qwen-Image-Studio-Realism", | |
| "weights": "qwen-studio-realism.safetensors", | |
| "trigger_word": "Studio Realism" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Sketch-Smudge/resolve/main/images/1.png", | |
| "title": "Sketch Smudge", | |
| "repo": "prithivMLmods/Qwen-Image-Sketch-Smudge", | |
| "weights": "qwen-sketch-smudge.safetensors", | |
| "trigger_word": "Sketch Smudge" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Anime-LoRA/resolve/main/images/1.png", | |
| "title": "Qwen Anime", | |
| "repo": "prithivMLmods/Qwen-Image-Anime-LoRA", | |
| "weights": "qwen-anime.safetensors", | |
| "trigger_word": "Qwen Anime" | |
| }, | |
| { | |
| "image": "https://huggingface.co/prithivMLmods/Qwen-Image-Synthetic-Face/resolve/main/images/2.png", | |
| "title": "Synthetic Face", | |
| "repo": "prithivMLmods/Qwen-Image-Synthetic-Face", | |
| "weights": "qwen-synthetic-face.safetensors", | |
| "trigger_word": "Synthetic Face" | |
| }, | |
| { | |
| "image": "huggingface.co/prithivMLmods/Qwen-Image-Fragmented-Portraiture/resolve/main/images/3.png", | |
| "title": "Fragmented Portraiture", | |
| "repo": "prithivMLmods/Qwen-Image-Fragmented-Portraiture", | |
| "weights": "qwen-fragmented-portraiture.safetensors", | |
| "trigger_word": "Fragmented Portraiture" | |
| }, | |
| ] | |
| #--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------# | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| base_model = "Qwen/Qwen-Image" | |
| # Load Qwen Image pipeline | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) | |
| # Add aspect ratios for Qwen | |
| aspect_ratios = { | |
| "1:1": (1024, 1024), | |
| "16:9": (1344, 768), | |
| "9:16": (768, 1344), | |
| "4:3": (1152, 896), | |
| "3:4": (896, 1152), | |
| "3:2": (1216, 832), | |
| "2:3": (832, 1216) | |
| } | |
| MAX_SEED = 2**32-1 | |
| # Add the custom method to the pipeline | |
| pipe.qwen_pipe_call_that_returns_an_iterable_of_images = qwen_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| class calculateDuration: | |
| def __init__(self, activity_name=""): | |
| self.activity_name = activity_name | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_value, traceback): | |
| self.end_time = time.time() | |
| self.elapsed_time = self.end_time - self.start_time | |
| if self.activity_name: | |
| print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
| else: | |
| print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
| def load_lora_opt(pipe, lora_input): | |
| lora_input = lora_input.strip() | |
| if not lora_input: | |
| return | |
| # If it's just an ID like "author/model" | |
| if "/" in lora_input and not lora_input.startswith("http"): | |
| pipe.load_lora_weights(lora_input, adapter_name="default") | |
| return | |
| if lora_input.startswith("http"): | |
| url = lora_input | |
| # Repo page (no blob/resolve) | |
| if "huggingface.co" in url and "/blob/" not in url and "/resolve/" not in url: | |
| repo_id = urlparse(url).path.strip("/") | |
| pipe.load_lora_weights(repo_id, adapter_name="default") | |
| return | |
| # Blob link → convert to resolve link | |
| if "/blob/" in url: | |
| url = url.replace("/blob/", "/resolve/") | |
| # Download direct file | |
| tmp_dir = tempfile.mkdtemp() | |
| local_path = os.path.join(tmp_dir, os.path.basename(urlparse(url).path)) | |
| try: | |
| print(f"Downloading LoRA from {url}...") | |
| resp = requests.get(url, stream=True) | |
| resp.raise_for_status() | |
| with open(local_path, "wb") as f: | |
| for chunk in resp.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| print(f"Saved LoRA to {local_path}") | |
| pipe.load_lora_weights(local_path, adapter_name="default") | |
| finally: | |
| shutil.rmtree(tmp_dir, ignore_errors=True) | |
| def update_selection(evt: gr.SelectData, width, height): | |
| selected_lora = loras[evt.index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅" | |
| if "aspect" in selected_lora: | |
| if selected_lora["aspect"] == "portrait": | |
| width = 768 | |
| height = 1024 | |
| elif selected_lora["aspect"] == "landscape": | |
| width = 1024 | |
| height = 768 | |
| else: | |
| width = 1024 | |
| height = 1024 | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, | |
| evt.index, | |
| width, | |
| height, | |
| ) | |
| def generate_image(prompt_mash, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
| pipe.to("cuda") | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| with calculateDuration("Generating image"): | |
| # Generate image with live preview | |
| for img in pipe.qwen_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt_mash, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ): | |
| yield img | |
| def set_dimensions(ar): | |
| w, h = aspect_ratios[ar] | |
| return gr.update(value=w), gr.update(value=h) | |
| def run_lora(prompt, negative_prompt, use_negative_prompt, aspect_ratio, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| if selected_index is None: | |
| raise gr.Error("You must select a LoRA before proceeding.🧨") | |
| selected_lora = loras[selected_index] | |
| lora_path = selected_lora["repo"] | |
| trigger_word = selected_lora["trigger_word"] | |
| # Set dimensions based on aspect ratio | |
| width, height = aspect_ratios[aspect_ratio] | |
| if trigger_word: | |
| if "trigger_position" in selected_lora: | |
| if selected_lora["trigger_position"] == "prepend": | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = f"{prompt} {trigger_word}" | |
| else: | |
| prompt_mash = f"{trigger_word} {prompt}" | |
| else: | |
| prompt_mash = prompt | |
| # Handle negative prompt | |
| final_negative_prompt = negative_prompt if use_negative_prompt else "" | |
| with calculateDuration("Unloading LoRA"): | |
| # Clear existing adapters | |
| current_adapters = pipe.get_list_adapters() if hasattr(pipe, 'get_list_adapters') else [] | |
| for adapter in current_adapters: | |
| if hasattr(pipe, 'delete_adapters'): | |
| pipe.delete_adapters(adapter) | |
| if hasattr(pipe, 'disable_lora'): | |
| pipe.disable_lora() | |
| # Load new LoRA weights | |
| with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
| weight_name = selected_lora.get("weights", None) | |
| load_lora_opt(pipe, lora_path) | |
| if hasattr(pipe, 'set_adapters'): | |
| pipe.set_adapters(["default"], adapter_weights=[lora_scale]) | |
| with calculateDuration("Randomizing seed"): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| image_generator = generate_image(prompt_mash, final_negative_prompt, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
| final_image = None | |
| step_counter = 0 | |
| for image in image_generator: | |
| step_counter += 1 | |
| final_image = image | |
| progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' | |
| yield image, seed, gr.update(value=progress_bar, visible=True) | |
| yield final_image, seed, gr.update(value=progress_bar, visible=False) | |
| def get_huggingface_safetensors(link): | |
| split_link = link.split("/") | |
| if len(split_link) == 2: | |
| model_card = ModelCard.load(link) | |
| base_model = model_card.data.get("base_model") | |
| print(base_model) | |
| # Allow Qwen models | |
| if base_model and "qwen" not in base_model.lower(): | |
| raise Exception("Qwen-compatible LoRA Not Found!") | |
| image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) | |
| trigger_word = model_card.data.get("instance_prompt", "") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None | |
| fs = HfFileSystem() | |
| try: | |
| list_of_files = fs.ls(link, detail=False) | |
| for file in list_of_files: | |
| if file.endswith(".safetensors"): | |
| safetensors_name = file.split("/")[-1] | |
| if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): | |
| image_elements = file.split("/") | |
| image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" | |
| except Exception as e: | |
| print(e) | |
| gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
| raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA") | |
| return split_link[1], link, safetensors_name, trigger_word, image_url | |
| def check_custom_model(link): | |
| if link.startswith("https://"): | |
| if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"): | |
| link_split = link.split("huggingface.co/") | |
| return get_huggingface_safetensors(link_split[1]) | |
| else: | |
| return get_huggingface_safetensors(link) | |
| def add_custom_lora(custom_lora): | |
| global loras | |
| if custom_lora: | |
| try: | |
| title, repo, path, trigger_word, image = check_custom_model(custom_lora) | |
| print(f"Loaded custom LoRA: {repo}") | |
| card = f''' | |
| <div class="custom_lora_card"> | |
| <span>Loaded custom LoRA:</span> | |
| <div class="card_internal"> | |
| <img src="{image}" /> | |
| <div> | |
| <h3>{title}</h3> | |
| <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small> | |
| </div> | |
| </div> | |
| </div> | |
| ''' | |
| existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None) | |
| if not existing_item_index: | |
| new_item = { | |
| "image": image, | |
| "title": title, | |
| "repo": repo, | |
| "weights": path, | |
| "trigger_word": trigger_word | |
| } | |
| print(new_item) | |
| existing_item_index = len(loras) | |
| loras.append(new_item) | |
| return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word | |
| except Exception as e: | |
| gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen compatible LoRA") | |
| return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen compatible LoRA"), gr.update(visible=False), gr.update(), "", None, "" | |
| else: | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| def remove_custom_lora(): | |
| return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, "" | |
| run_lora.zerogpu = True | |
| css = ''' | |
| #gen_btn{height: 100%} | |
| #gen_column{align-self: stretch} | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #gallery .grid-wrap{height: 10vh} | |
| #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} | |
| .card_internal{display: flex;height: 100px;margin-top: .5em} | |
| .card_internal img{margin-right: 1em} | |
| .styler{--form-gap-width: 0px !important} | |
| #progress{height:30px} | |
| #progress .generating{display:none} | |
| .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} | |
| .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} | |
| ''' | |
| with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app: | |
| title = gr.HTML("""<h1>Qwen Image LoRA DLC🥳</h1>""", elem_id="title",) | |
| selected_index = gr.State(None) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.Textbox(label="Prompt", lines=1, placeholder="✦︎ Choose the LoRA and type the prompt") | |
| with gr.Column(scale=1, elem_id="gen_column"): | |
| generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
| with gr.Row(): | |
| with gr.Column(): | |
| selected_info = gr.Markdown("") | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="Qwen LoRA Collection", | |
| allow_preview=False, | |
| columns=3, | |
| elem_id="gallery", | |
| show_share_button=False | |
| ) | |
| with gr.Group(): | |
| custom_lora = gr.Textbox(label="Enter Custom Qwen LoRA", placeholder="prithivMLmods/Qwen-Image-Sketch-Smudge") | |
| gr.Markdown("[Check the list of Qwen-compatible LoRAs](https://huggingface.co/models?search=qwen+lora)", elem_id="lora_list") | |
| custom_lora_info = gr.HTML(visible=False) | |
| custom_lora_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(): | |
| progress_bar = gr.Markdown(elem_id="progress", visible=False) | |
| result = gr.Image(label="Generated Image", format="png") | |
| with gr.Row(): | |
| aspect_ratio = gr.Dropdown( | |
| label="Aspect Ratio", | |
| choices=list(aspect_ratios.keys()), | |
| value="1:1", | |
| ) | |
| with gr.Row(): | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox( | |
| label="Use negative prompt", value=True, visible=True | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="text, watermark, copyright, blurry, low resolution", | |
| visible=True, | |
| ) | |
| with gr.Column(): | |
| with gr.Row(): | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=4.0) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=50) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=64, value=1024) | |
| with gr.Row(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2, step=0.01, value=1.0) | |
| # Event handlers | |
| gallery.select( | |
| update_selection, | |
| inputs=[width, height], | |
| outputs=[prompt, selected_info, selected_index, width, height] | |
| ) | |
| aspect_ratio.change( | |
| fn=set_dimensions, | |
| inputs=aspect_ratio, | |
| outputs=[width, height] | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt | |
| ) | |
| custom_lora.input( | |
| add_custom_lora, | |
| inputs=[custom_lora], | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt] | |
| ) | |
| custom_lora_button.click( | |
| remove_custom_lora, | |
| outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora] | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=run_lora, | |
| inputs=[prompt, negative_prompt, use_negative_prompt, aspect_ratio, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
| outputs=[result, seed, progress_bar] | |
| ) | |
| app.queue() | |
| app.launch(share=False, ssr_mode=False, show_error=True) |