Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,752 Bytes
9955332 7dc9ea8 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e 609822b 4fc6b9e 9955332 4fc6b9e 7dc9ea8 ac4e192 9955332 4fc6b9e 9955332 4fc6b9e 7dc9ea8 9955332 4fc6b9e 9955332 4fc6b9e 4490767 d8886fd 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e d3a0507 4fc6b9e 9955332 4fc6b9e d3a0507 4fc6b9e 9955332 4fc6b9e 7dc9ea8 4fc6b9e ac4e192 7dc9ea8 ac4e192 7dc9ea8 4fc6b9e 7dc9ea8 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e 9955332 4fc6b9e ac4e192 4fc6b9e ac4e192 4fc6b9e ac4e192 7dc9ea8 9955332 4fc6b9e 7dc9ea8 9955332 4fc6b9e 83cef34 7dc9ea8 4fc6b9e 1984692 4fc6b9e 9955332 4fc6b9e cf5a996 9955332 4fc6b9e 7dc9ea8 9955332 5c46319 4fc6b9e 9955332 589ac46 4fc6b9e 9955332 4ce1c9b 4fc6b9e bb22f6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import os
import sys
import random
import uuid
import json
import time
import asyncio
import re
import tempfile
import ast
import html
import spaces
from threading import Thread
from typing import Iterable, Optional
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageOps
import requests
from huggingface_hub import snapshot_download
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
HunYuanVLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
GenerationConfig
)
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"✅ Using device: {device}")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 { font-size: 2.3em !important; }
#output-title h2 { font-size: 2.1em !important; }
"""
# --- Model Loading ---
# 1. DeepSeek-OCR
MODEL_DS = "prithivMLmods/DeepSeek-OCR-Latest-BF16.I64" # - (deepseek-ai/DeepSeek-OCR)
print(f"Loading {MODEL_DS}...")
tokenizer_ds = AutoTokenizer.from_pretrained(MODEL_DS, trust_remote_code=True)
model_ds = AutoModel.from_pretrained(
MODEL_DS, trust_remote_code=True, use_safetensors=True
).to(device).eval()
if device.type == 'cuda':
model_ds = model_ds.to(torch.bfloat16)
# 2. Dots.OCR
MODEL_DOTS = "prithivMLmods/Dots.OCR-Latest-BF16" # - (rednote-hilab/dots.ocr)
print(f"Loading {MODEL_DOTS}...")
processor_dots = AutoProcessor.from_pretrained(MODEL_DOTS, trust_remote_code=True)
model_dots = AutoModelForCausalLM.from_pretrained(
MODEL_DOTS,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 3. HunyuanOCR
MODEL_HUNYUAN = "tencent/HunyuanOCR"
print(f"Loading {MODEL_HUNYUAN}...")
processor_hy = AutoProcessor.from_pretrained(MODEL_HUNYUAN, use_fast=False)
model_hy = HunYuanVLForConditionalGeneration.from_pretrained(
MODEL_HUNYUAN,
attn_implementation="eager",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 4. Nanonets-OCR2-3B
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
print(f"Loading {MODEL_ID_X}...")
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 5. NVIDIA-Nemotron-Parse-v1.1
print("Downloading NVIDIA-Nemotron snapshot to ensure all scripts are present...")
try:
NEMO_DIR = snapshot_download(repo_id="nvidia/NVIDIA-Nemotron-Parse-v1.1")
print(f"Model downloaded to: {NEMO_DIR}")
sys.path.append(NEMO_DIR)
# Import postprocessing from the downloaded directory
# Note: Using try/except in case imports fail, though usually required for this model
try:
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
except ImportError:
print("Warning: Could not import Nemotron postprocessing scripts. Fallback to raw decode.")
MODEL_NEMO = "nvidia/NVIDIA-Nemotron-Parse-v1.1"
print(f"Loading {MODEL_NEMO}...")
processor_nemo = AutoProcessor.from_pretrained(NEMO_DIR, trust_remote_code=True)
model_nemo = AutoModel.from_pretrained(
NEMO_DIR,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
).to(device).eval()
# Load generation config
gen_config_nemo = GenerationConfig.from_pretrained(NEMO_DIR, trust_remote_code=True)
NEMO_AVAILABLE = True
except Exception as e:
print(f"Error loading NVIDIA-Nemotron: {e}")
NEMO_AVAILABLE = False
print("✅ All models loaded successfully.")
def clean_repeated_substrings(text):
"""Clean repeated substrings in text (for Hunyuan)"""
n = len(text)
if n < 8000:
return text
for length in range(2, n // 10 + 1):
candidate = text[-length:]
count = 0
i = n - length
while i >= 0 and text[i:i + length] == candidate:
count += 1
i -= length
if count >= 10:
return text[:n - length * (count - 1)]
return text
def find_result_image(path):
for filename in os.listdir(path):
if "grounding" in filename or "result" in filename:
try:
return Image.open(os.path.join(path, filename))
except Exception as e:
print(f"Error opening result image: {e}")
return None
@spaces.GPU
def run_model(
model_choice,
image,
ds_task_type,
ds_model_size,
ds_ref_text,
custom_prompt,
max_new_tokens,
temperature,
top_p,
top_k
):
if image is None:
yield "Please upload an image.", None
return
# === DeepSeek-OCR Logic ===
if model_choice == "DeepSeek-OCR-Latest-BF16.I64":
# Prepare Prompt based on Task
if ds_task_type == "Free OCR":
prompt = "<image>\nFree OCR."
elif ds_task_type == "Convert to Markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown."
elif ds_task_type == "Parse Figure":
prompt = "<image>\nParse the figure."
elif ds_task_type == "Locate Object by Reference":
if not ds_ref_text or ds_ref_text.strip() == "":
yield "Error: For 'Locate', you must provide Reference Text.", None
return
prompt = f"<image>\nLocate <|ref|>{ds_ref_text.strip()}<|/ref|> in the image."
else:
prompt = "<image>\nFree OCR."
with tempfile.TemporaryDirectory() as output_path:
temp_image_path = os.path.join(output_path, "temp_image.png")
image.save(temp_image_path)
# Size config
size_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = size_configs.get(ds_model_size, size_configs["Gundam (Recommended)"])
text_result = model_ds.infer(
tokenizer_ds,
prompt=prompt,
image_file=temp_image_path,
output_path=output_path,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=True,
test_compress=True,
eval_mode=True,
)
# Draw Bounding Boxes if present
result_image_pil = None
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
matches = list(pattern.finditer(text_result))
if matches:
image_with_bboxes = image.copy()
draw = ImageDraw.Draw(image_with_bboxes)
w, h = image.size
for match in matches:
coords_norm = [int(c) for c in match.groups()]
x1 = int(coords_norm[0] / 1000 * w)
y1 = int(coords_norm[1] / 1000 * h)
x2 = int(coords_norm[2] / 1000 * w)
y2 = int(coords_norm[3] / 1000 * h)
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
result_image_pil = image_with_bboxes
else:
result_image_pil = find_result_image(output_path)
yield text_result, result_image_pil
# === Dots.OCR Logic ===
elif model_choice == "Dots.OCR-Latest-BF16":
query = custom_prompt if custom_prompt else "Extract all text from this image."
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": query},
]
}]
prompt_full = processor_dots.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_dots(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(model_dots.device)
streamer = TextIteratorStreamer(processor_dots, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": int(top_k),
}
thread = Thread(target=model_dots.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, None
# === HunyuanOCR Logic ===
elif model_choice == "HunyuanOCR":
query = custom_prompt if custom_prompt else "检测并识别图片中的文字,将文本坐标格式化输出。"
# Hunyuan template structure
messages = [
{"role": "system", "content": ""},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": query},
],
}
]
# Note: Hunyuan processor expects specific handling
texts = [processor_hy.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)]
inputs = processor_hy(text=texts, images=image, padding=True, return_tensors="pt")
inputs = inputs.to(model_hy.device)
# Generate (Not streaming for Hunyuan usually)
with torch.no_grad():
generated_ids = model_hy.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
input_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_len:]
output_text = processor_hy.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
final_text = clean_repeated_substrings(output_text)
yield final_text, None
# === Nanonets-OCR2-3B Logic ===
elif model_choice == "Nanonets-OCR2-3B":
query = custom_prompt if custom_prompt else "Extract the text from this image."
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": query},
],
}
]
text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_x(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
).to(model_x.device)
streamer = TextIteratorStreamer(processor_x, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": int(top_k),
}
thread = Thread(target=model_x.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, None
# === NVIDIA-Nemotron-Parse-v1.1 Logic ===
elif model_choice == "NVIDIA-Nemotron-Parse-v1.1":
if not NEMO_AVAILABLE:
yield "Nemotron model failed to load. Check logs.", None
return
# Default Prompt for Nemotron markdown extraction
task_prompt = "</s><s><predict_bbox><predict_classes><output_markdown>"
# If user provides a custom prompt, we might want to use it,
# but Nemotron is highly specialized. Let's stick to the default strict prompt
# unless we want to support just raw text. For this demo, we use the standard full pipeline.
inputs = processor_nemo(images=[image], text=task_prompt, return_tensors="pt").to(model_nemo.device)
with torch.no_grad():
outputs = model_nemo.generate(
**inputs,
generation_config=gen_config_nemo,
max_new_tokens=max_new_tokens
)
generated_text = processor_nemo.batch_decode(outputs, skip_special_tokens=True)[0]
# The output might contain the prompt or special tokens depending on exact decoding
# The prompt used </s><s> which usually gets stripped by skip_special_tokens=True
yield generated_text, None
image_examples = [
["examples/1.jpg"],
["examples/2.jpg"],
["examples/3.jpg"],
]
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
gr.Markdown("Compare DeepSeek-OCR, Dots.OCR, HunyuanOCR, Nanonets-OCR2-3B, and NVIDIA-Nemotron-Parse-v1.1")
with gr.Row():
with gr.Column(scale=1):
# Global Inputs
model_choice = gr.Dropdown(
choices=[
"DeepSeek-OCR-Latest-BF16.I64",
"Dots.OCR-Latest-BF16",
"HunyuanOCR",
"Nanonets-OCR2-3B",
"NVIDIA-Nemotron-Parse-v1.1"
],
label="Select Model",
value="DeepSeek-OCR-Latest-BF16.I64"
)
image_input = gr.Image(type="pil", label="Upload Image", sources=["upload", "clipboard"], height=350)
# DeepSeek Specific Options
with gr.Group(visible=True) as ds_group:
ds_model_size = gr.Dropdown(
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
value="Large", label="DeepSeek Resolution"
)
ds_task_type = gr.Dropdown(
choices=["Free OCR", "Convert to Markdown", "Parse Figure", "Locate Object by Reference"],
value="Convert to Markdown", label="Task Type"
)
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
with gr.Group(visible=False) as prompt_group:
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2, value="Convert to Markdown precisely.")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Max New Tokens")
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top P")
top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K")
submit_btn = gr.Button("Perform OCR", variant="primary")
gr.Examples(examples=image_examples, inputs=image_input)
with gr.Column(scale=2):
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
def update_visibility(model):
is_ds = (model == "DeepSeek-OCR-Latest-BF16.I64")
return gr.Group(visible=is_ds), gr.Group(visible=not is_ds)
def toggle_ref_text(task):
return gr.Textbox(visible=(task == "Locate Object by Reference"))
model_choice.change(fn=update_visibility, inputs=model_choice, outputs=[ds_group, prompt_group])
ds_task_type.change(fn=toggle_ref_text, inputs=ds_task_type, outputs=ds_ref_text)
submit_btn.click(
fn=run_model,
inputs=[
model_choice, image_input, ds_task_type, ds_model_size, ds_ref_text,
custom_prompt, max_new_tokens, temperature, top_p, top_k
],
outputs=[output_text, output_image]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True) |