Super-OCRs-Demo / app.py
prithivMLmods's picture
update app
cf5a996 verified
raw
history blame
19.8 kB
import os
import sys
import random
import uuid
import json
import time
import asyncio
import re
import tempfile
import ast
import html
import spaces
from threading import Thread
from typing import Iterable, Optional
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageOps
import requests
from huggingface_hub import snapshot_download
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
HunYuanVLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
GenerationConfig
)
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"✅ Using device: {device}")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
css = """
#main-title h1 { font-size: 2.3em !important; }
#output-title h2 { font-size: 2.1em !important; }
"""
# --- Model Loading ---
# 1. DeepSeek-OCR
MODEL_DS = "prithivMLmods/DeepSeek-OCR-Latest-BF16.I64" # - (deepseek-ai/DeepSeek-OCR)
print(f"Loading {MODEL_DS}...")
tokenizer_ds = AutoTokenizer.from_pretrained(MODEL_DS, trust_remote_code=True)
model_ds = AutoModel.from_pretrained(
MODEL_DS, trust_remote_code=True, use_safetensors=True
).to(device).eval()
if device.type == 'cuda':
model_ds = model_ds.to(torch.bfloat16)
# 2. Dots.OCR
MODEL_DOTS = "prithivMLmods/Dots.OCR-Latest-BF16" # - (rednote-hilab/dots.ocr)
print(f"Loading {MODEL_DOTS}...")
processor_dots = AutoProcessor.from_pretrained(MODEL_DOTS, trust_remote_code=True)
model_dots = AutoModelForCausalLM.from_pretrained(
MODEL_DOTS,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 3. HunyuanOCR
MODEL_HUNYUAN = "tencent/HunyuanOCR"
print(f"Loading {MODEL_HUNYUAN}...")
processor_hy = AutoProcessor.from_pretrained(MODEL_HUNYUAN, use_fast=False)
model_hy = HunYuanVLForConditionalGeneration.from_pretrained(
MODEL_HUNYUAN,
attn_implementation="eager",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 4. Nanonets-OCR2-3B
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
print(f"Loading {MODEL_ID_X}...")
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
).eval()
# 5. NVIDIA-Nemotron-Parse-v1.1
print("Downloading NVIDIA-Nemotron snapshot to ensure all scripts are present...")
try:
NEMO_DIR = snapshot_download(repo_id="nvidia/NVIDIA-Nemotron-Parse-v1.1")
print(f"Model downloaded to: {NEMO_DIR}")
sys.path.append(NEMO_DIR)
# Import postprocessing from the downloaded directory
# Note: Using try/except in case imports fail, though usually required for this model
try:
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
except ImportError:
print("Warning: Could not import Nemotron postprocessing scripts. Fallback to raw decode.")
MODEL_NEMO = "nvidia/NVIDIA-Nemotron-Parse-v1.1"
print(f"Loading {MODEL_NEMO}...")
processor_nemo = AutoProcessor.from_pretrained(NEMO_DIR, trust_remote_code=True)
model_nemo = AutoModel.from_pretrained(
NEMO_DIR,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
).to(device).eval()
# Load generation config
gen_config_nemo = GenerationConfig.from_pretrained(NEMO_DIR, trust_remote_code=True)
NEMO_AVAILABLE = True
except Exception as e:
print(f"Error loading NVIDIA-Nemotron: {e}")
NEMO_AVAILABLE = False
print("✅ All models loaded successfully.")
def clean_repeated_substrings(text):
"""Clean repeated substrings in text (for Hunyuan)"""
n = len(text)
if n < 8000:
return text
for length in range(2, n // 10 + 1):
candidate = text[-length:]
count = 0
i = n - length
while i >= 0 and text[i:i + length] == candidate:
count += 1
i -= length
if count >= 10:
return text[:n - length * (count - 1)]
return text
def find_result_image(path):
for filename in os.listdir(path):
if "grounding" in filename or "result" in filename:
try:
return Image.open(os.path.join(path, filename))
except Exception as e:
print(f"Error opening result image: {e}")
return None
@spaces.GPU
def run_model(
model_choice,
image,
ds_task_type,
ds_model_size,
ds_ref_text,
custom_prompt,
max_new_tokens,
temperature,
top_p,
top_k
):
if image is None:
yield "Please upload an image.", None
return
# === DeepSeek-OCR Logic ===
if model_choice == "DeepSeek-OCR-Latest-BF16.I64":
# Prepare Prompt based on Task
if ds_task_type == "Free OCR":
prompt = "<image>\nFree OCR."
elif ds_task_type == "Convert to Markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown."
elif ds_task_type == "Parse Figure":
prompt = "<image>\nParse the figure."
elif ds_task_type == "Locate Object by Reference":
if not ds_ref_text or ds_ref_text.strip() == "":
yield "Error: For 'Locate', you must provide Reference Text.", None
return
prompt = f"<image>\nLocate <|ref|>{ds_ref_text.strip()}<|/ref|> in the image."
else:
prompt = "<image>\nFree OCR."
with tempfile.TemporaryDirectory() as output_path:
temp_image_path = os.path.join(output_path, "temp_image.png")
image.save(temp_image_path)
# Size config
size_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = size_configs.get(ds_model_size, size_configs["Gundam (Recommended)"])
text_result = model_ds.infer(
tokenizer_ds,
prompt=prompt,
image_file=temp_image_path,
output_path=output_path,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=True,
test_compress=True,
eval_mode=True,
)
# Draw Bounding Boxes if present
result_image_pil = None
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
matches = list(pattern.finditer(text_result))
if matches:
image_with_bboxes = image.copy()
draw = ImageDraw.Draw(image_with_bboxes)
w, h = image.size
for match in matches:
coords_norm = [int(c) for c in match.groups()]
x1 = int(coords_norm[0] / 1000 * w)
y1 = int(coords_norm[1] / 1000 * h)
x2 = int(coords_norm[2] / 1000 * w)
y2 = int(coords_norm[3] / 1000 * h)
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
result_image_pil = image_with_bboxes
else:
result_image_pil = find_result_image(output_path)
yield text_result, result_image_pil
# === Dots.OCR Logic ===
elif model_choice == "Dots.OCR-Latest-BF16":
query = custom_prompt if custom_prompt else "Extract all text from this image."
messages = [{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": query},
]
}]
prompt_full = processor_dots.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_dots(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(model_dots.device)
streamer = TextIteratorStreamer(processor_dots, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": int(top_k),
}
thread = Thread(target=model_dots.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, None
# === HunyuanOCR Logic ===
elif model_choice == "HunyuanOCR":
query = custom_prompt if custom_prompt else "检测并识别图片中的文字,将文本坐标格式化输出。"
# Hunyuan template structure
messages = [
{"role": "system", "content": ""},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": query},
],
}
]
# Note: Hunyuan processor expects specific handling
texts = [processor_hy.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)]
inputs = processor_hy(text=texts, images=image, padding=True, return_tensors="pt")
inputs = inputs.to(model_hy.device)
# Generate (Not streaming for Hunyuan usually)
with torch.no_grad():
generated_ids = model_hy.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False
)
input_len = inputs.input_ids.shape[1]
generated_ids_trimmed = generated_ids[:, input_len:]
output_text = processor_hy.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
final_text = clean_repeated_substrings(output_text)
yield final_text, None
# === Nanonets-OCR2-3B Logic ===
elif model_choice == "Nanonets-OCR2-3B":
query = custom_prompt if custom_prompt else "Extract the text from this image."
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": query},
],
}
]
text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_x(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
).to(model_x.device)
streamer = TextIteratorStreamer(processor_x, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": int(top_k),
}
thread = Thread(target=model_x.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, None
# === NVIDIA-Nemotron-Parse-v1.1 Logic ===
elif model_choice == "NVIDIA-Nemotron-Parse-v1.1":
if not NEMO_AVAILABLE:
yield "Nemotron model failed to load. Check logs.", None
return
# Default Prompt for Nemotron markdown extraction
task_prompt = "</s><s><predict_bbox><predict_classes><output_markdown>"
# If user provides a custom prompt, we might want to use it,
# but Nemotron is highly specialized. Let's stick to the default strict prompt
# unless we want to support just raw text. For this demo, we use the standard full pipeline.
inputs = processor_nemo(images=[image], text=task_prompt, return_tensors="pt").to(model_nemo.device)
with torch.no_grad():
outputs = model_nemo.generate(
**inputs,
generation_config=gen_config_nemo,
max_new_tokens=max_new_tokens
)
generated_text = processor_nemo.batch_decode(outputs, skip_special_tokens=True)[0]
# The output might contain the prompt or special tokens depending on exact decoding
# The prompt used </s><s> which usually gets stripped by skip_special_tokens=True
yield generated_text, None
image_examples = [
["examples/1.jpg"],
["examples/2.jpg"],
["examples/3.jpg"],
]
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
gr.Markdown("Compare DeepSeek-OCR, Dots.OCR, HunyuanOCR, Nanonets-OCR2-3B, and NVIDIA-Nemotron-Parse-v1.1")
with gr.Row():
with gr.Column(scale=1):
# Global Inputs
model_choice = gr.Dropdown(
choices=[
"DeepSeek-OCR-Latest-BF16.I64",
"Dots.OCR-Latest-BF16",
"HunyuanOCR",
"Nanonets-OCR2-3B",
"NVIDIA-Nemotron-Parse-v1.1"
],
label="Select Model",
value="DeepSeek-OCR-Latest-BF16.I64"
)
image_input = gr.Image(type="pil", label="Upload Image", sources=["upload", "clipboard"], height=350)
# DeepSeek Specific Options
with gr.Group(visible=True) as ds_group:
ds_model_size = gr.Dropdown(
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
value="Large", label="DeepSeek Resolution"
)
ds_task_type = gr.Dropdown(
choices=["Free OCR", "Convert to Markdown", "Parse Figure", "Locate Object by Reference"],
value="Convert to Markdown", label="Task Type"
)
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
with gr.Group(visible=False) as prompt_group:
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2, value="Convert to Markdown precisely.")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Max New Tokens")
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top P")
top_k = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K")
submit_btn = gr.Button("Perform OCR", variant="primary")
gr.Examples(examples=image_examples, inputs=image_input)
with gr.Column(scale=2):
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
def update_visibility(model):
is_ds = (model == "DeepSeek-OCR-Latest-BF16.I64")
return gr.Group(visible=is_ds), gr.Group(visible=not is_ds)
def toggle_ref_text(task):
return gr.Textbox(visible=(task == "Locate Object by Reference"))
model_choice.change(fn=update_visibility, inputs=model_choice, outputs=[ds_group, prompt_group])
ds_task_type.change(fn=toggle_ref_text, inputs=ds_task_type, outputs=ds_ref_text)
submit_btn.click(
fn=run_model,
inputs=[
model_choice, image_input, ds_task_type, ds_model_size, ds_ref_text,
custom_prompt, max_new_tokens, temperature, top_p, top_k
],
outputs=[output_text, output_image]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)