MEIS / app.py
proyecto-meis's picture
Update app.py
631b67d verified
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import tensorflow as tf
from tensorflow.keras.layers import (
Softmax, GlobalAveragePooling1D, GlobalMaxPooling1D, Activation, Concatenate,
Conv1D, MultiHeadAttention, LayerNormalization, Input, LSTM, Embedding,
Lambda, Dense, Dropout, concatenate, SpatialDropout1D, Bidirectional
)
from tensorflow.keras.models import Model
from transformers import TFAutoModel, AutoTokenizer
from tcn import TCN
import re
import os
bert_model_name = "dccuchile/bert-base-spanish-wwm-uncased"
MAX_LEN = 274
WEIGHTS_PATH = os.getenv("WEIGHTS_PATH", "model.h5")
THRESHOLD = float(os.getenv("THRESHOLD", "0.5"))
tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = TFAutoModel.from_pretrained(bert_model_name, output_hidden_states=False, output_attentions=False)
bert_model.trainable = False
def tcn_model_with_bert(bert_model_name="google-bert/bert-base-multilingual-uncased", max_length=512):
input_ids = Input(shape=(max_length,), dtype=tf.int32, name='input_ids')
attention_mask = Input(shape=(max_length,), dtype=tf.int32, name='attention_mask')
def extract_bert_embeddings(inputs):
return tf.cast(
bert_model({'input_ids': inputs[0], 'attention_mask': inputs[1]}).last_hidden_state,
tf.float32
)
bert_output = Lambda(extract_bert_embeddings, output_shape=(max_length, 768))([input_ids, attention_mask])
x = SpatialDropout1D(0.15)(bert_output)
x = LSTM(128, activation='tanh', stateful=False, return_sequences=True, dropout=0.1)(x)
x = LayerNormalization()(x)
x = Bidirectional(TCN(128, dilations=[1, 2, 4, 8], kernel_size=5, return_sequences=True, activation='gelu', name='tcn1'))(x)
gap = GlobalAveragePooling1D()(x)
gmp = GlobalMaxPooling1D()(x)
head = Concatenate()([gap, gmp])
head = Dense(64, activation="gelu")(head)
head = Dropout(0.2)(head)
outp = Dense(1, activation="sigmoid")(head)
model = Model(inputs=[input_ids, attention_mask], outputs=outp)
model.compile(
optimizer=tf.keras.optimizers.AdamW(learning_rate=1e-4, weight_decay=0.01, clipnorm=1.0),
loss="binary_crossentropy",
metrics=['accuracy']
)
return model
def preprocessing(text):
if not isinstance(text, str) or not text:
return ""
text = re.sub(r'\s*https?://\S+(\s+|$)', ' ', text).strip()
text = re.sub(r'\S*@\S*\s?', ' ', text).strip()
text = re.sub(r'#\S*\s?', ' ', text).strip()
text = re.sub(r'[.?!¡¿]+$', '', text)
text = text.lower().strip()
return text
model = tcn_model_with_bert(bert_model_name=bert_model_name, max_length=MAX_LEN)
if os.path.exists(WEIGHTS_PATH):
try:
model.load_weights(WEIGHTS_PATH)
except Exception:
from tensorflow.keras.models import load_model
model = load_model(WEIGHTS_PATH, custom_objects={"TCN": TCN})
def predict_text(text: str, max_len: int = MAX_LEN, threshold: float = THRESHOLD):
preprocessed_text = preprocessing(text)
enc = tokenizer(
preprocessed_text,
truncation=True,
padding='max_length',
max_length=max_len,
return_tensors='tf'
)
probs = model.predict(
{'input_ids': enc['input_ids'], 'attention_mask': enc['attention_mask']},
verbose=0
)
score = float(probs[0][0])
label = int(score >= threshold)
return {
"txt": text,
"probability": round(score, 3),
"risk": "ALTO" if label == 1 else "BAJO"
}
app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
@app.post("/predict")
async def predict(payload: dict):
textos = payload.get("texto", [])
if not isinstance(textos, list):
textos = [textos]
details = [predict_text(t) for t in textos]
return {"details": details}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)