Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
+
# import streamlit as st
|
| 2 |
+
|
| 3 |
+
# x = st.slider('Select a value')
|
| 4 |
+
# st.write(x, 'squared is', x * x)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
import streamlit as st
|
| 8 |
+
import random
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
| 14 |
+
import tarfile
|
| 15 |
+
import os
|
| 16 |
+
import sys
|
| 17 |
+
import yaml
|
| 18 |
+
|
| 19 |
+
st.title("PrithviWxC Model Inference")
|
| 20 |
+
|
| 21 |
+
st.write("Setting up environment...")
|
| 22 |
+
|
| 23 |
+
# Set up torch backends and seeds
|
| 24 |
+
torch.jit.enable_onednn_fusion(True)
|
| 25 |
+
if torch.cuda.is_available():
|
| 26 |
+
st.write(f"Using device: {torch.cuda.get_device_name()}")
|
| 27 |
+
torch.backends.cudnn.benchmark = True
|
| 28 |
+
torch.backends.cudnn.deterministic = True
|
| 29 |
+
|
| 30 |
+
random.seed(42)
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
torch.cuda.manual_seed(42)
|
| 33 |
+
torch.manual_seed(42)
|
| 34 |
+
np.random.seed(42)
|
| 35 |
+
|
| 36 |
+
# Set device
|
| 37 |
+
if torch.cuda.is_available():
|
| 38 |
+
device = torch.device("cuda")
|
| 39 |
+
else:
|
| 40 |
+
device = torch.device("cpu")
|
| 41 |
+
|
| 42 |
+
st.write(f"Using device: {device}")
|
| 43 |
+
|
| 44 |
+
# Download and extract PrithviWxC module
|
| 45 |
+
st.write("Downloading and setting up PrithviWxC module...")
|
| 46 |
+
|
| 47 |
+
module_tar_path = hf_hub_download(
|
| 48 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 49 |
+
filename="PrithviWxC.tar.gz",
|
| 50 |
+
local_dir=".",
|
| 51 |
+
force_download=True
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
with tarfile.open(module_tar_path, "r:gz") as tar:
|
| 55 |
+
tar.extractall(path=".")
|
| 56 |
+
|
| 57 |
+
# Add the module path to sys.path
|
| 58 |
+
sys.path.append(os.path.abspath("./PrithviWxC"))
|
| 59 |
+
|
| 60 |
+
st.write("PrithviWxC module imported successfully.")
|
| 61 |
+
|
| 62 |
+
# Now import the module
|
| 63 |
+
from PrithviWxC.dataloaders.merra2 import Merra2Dataset, input_scalers, output_scalers, static_input_scalers, preproc
|
| 64 |
+
from PrithviWxC.model import PrithviWxC
|
| 65 |
+
|
| 66 |
+
# Variables and times
|
| 67 |
+
surface_vars = [
|
| 68 |
+
"EFLUX",
|
| 69 |
+
"GWETROOT",
|
| 70 |
+
"HFLUX",
|
| 71 |
+
"LAI",
|
| 72 |
+
"LWGAB",
|
| 73 |
+
"LWGEM",
|
| 74 |
+
"LWTUP",
|
| 75 |
+
"PS",
|
| 76 |
+
"QV2M",
|
| 77 |
+
"SLP",
|
| 78 |
+
"SWGNT",
|
| 79 |
+
"SWTNT",
|
| 80 |
+
"T2M",
|
| 81 |
+
"TQI",
|
| 82 |
+
"TQL",
|
| 83 |
+
"TQV",
|
| 84 |
+
"TS",
|
| 85 |
+
"U10M",
|
| 86 |
+
"V10M",
|
| 87 |
+
"Z0M",
|
| 88 |
+
]
|
| 89 |
+
static_surface_vars = ["FRACI", "FRLAND", "FROCEAN", "PHIS"]
|
| 90 |
+
vertical_vars = ["CLOUD", "H", "OMEGA", "PL", "QI", "QL", "QV", "T", "U", "V"]
|
| 91 |
+
levels = [
|
| 92 |
+
34.0,
|
| 93 |
+
39.0,
|
| 94 |
+
41.0,
|
| 95 |
+
43.0,
|
| 96 |
+
44.0,
|
| 97 |
+
45.0,
|
| 98 |
+
48.0,
|
| 99 |
+
51.0,
|
| 100 |
+
53.0,
|
| 101 |
+
56.0,
|
| 102 |
+
63.0,
|
| 103 |
+
68.0,
|
| 104 |
+
71.0,
|
| 105 |
+
72.0,
|
| 106 |
+
]
|
| 107 |
+
padding = {"level": [0, 0], "lat": [0, -1], "lon": [0, 0]}
|
| 108 |
+
|
| 109 |
+
st.write("Setting up dataset parameters...")
|
| 110 |
+
|
| 111 |
+
# User inputs for lead times and input times
|
| 112 |
+
lead_time = st.number_input("Lead Time (hours)", min_value=1, max_value=24, value=6)
|
| 113 |
+
input_time = st.number_input("Input Time Difference (hours)", min_value=-24, max_value=0, value=-6)
|
| 114 |
+
|
| 115 |
+
lead_times = [lead_time] # This variable can be changed to change the task
|
| 116 |
+
input_times = [input_time] # This variable can be changed to change the task
|
| 117 |
+
|
| 118 |
+
# Data file
|
| 119 |
+
time_range = ("2020-01-01T00:00:00", "2020-01-01T23:59:59")
|
| 120 |
+
|
| 121 |
+
st.write("Downloading data files...")
|
| 122 |
+
|
| 123 |
+
surf_dir = Path("./merra-2")
|
| 124 |
+
snapshot_download(
|
| 125 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 126 |
+
allow_patterns="merra-2/MERRA2_sfc_2020010[1].nc",
|
| 127 |
+
local_dir=".",
|
| 128 |
+
force_download=True,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
vert_dir = Path("./merra-2")
|
| 132 |
+
snapshot_download(
|
| 133 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 134 |
+
allow_patterns="merra-2/MERRA_pres_2020010[1].nc",
|
| 135 |
+
local_dir=".",
|
| 136 |
+
force_download=True,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Climatology
|
| 140 |
+
surf_clim_dir = Path("./climatology")
|
| 141 |
+
snapshot_download(
|
| 142 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 143 |
+
allow_patterns="climatology/climate_surface_doy00[1]*.nc",
|
| 144 |
+
local_dir=".",
|
| 145 |
+
force_download=True,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
vert_clim_dir = Path("./climatology")
|
| 149 |
+
snapshot_download(
|
| 150 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 151 |
+
allow_patterns="climatology/climate_vertical_doy00[1]*.nc",
|
| 152 |
+
local_dir=".",
|
| 153 |
+
force_download=True,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
st.write("Setting positional encoding...")
|
| 157 |
+
|
| 158 |
+
positional_encoding = "fourier"
|
| 159 |
+
|
| 160 |
+
st.write("Initializing dataset...")
|
| 161 |
+
|
| 162 |
+
dataset = Merra2Dataset(
|
| 163 |
+
time_range=time_range,
|
| 164 |
+
lead_times=lead_times,
|
| 165 |
+
input_times=input_times,
|
| 166 |
+
data_path_surface=surf_dir,
|
| 167 |
+
data_path_vertical=vert_dir,
|
| 168 |
+
climatology_path_surface=surf_clim_dir,
|
| 169 |
+
climatology_path_vertical=vert_clim_dir,
|
| 170 |
+
surface_vars=surface_vars,
|
| 171 |
+
static_surface_vars=static_surface_vars,
|
| 172 |
+
vertical_vars=vertical_vars,
|
| 173 |
+
levels=levels,
|
| 174 |
+
positional_encoding=positional_encoding,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
assert len(dataset) > 0, "There doesn't seem to be any valid data."
|
| 178 |
+
|
| 179 |
+
st.write("Loading scalers...")
|
| 180 |
+
|
| 181 |
+
surf_in_scal_path = Path("./climatology/musigma_surface.nc")
|
| 182 |
+
hf_hub_download(
|
| 183 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 184 |
+
filename=f"climatology/{surf_in_scal_path.name}",
|
| 185 |
+
local_dir=".",
|
| 186 |
+
force_download=True,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
vert_in_scal_path = Path("./climatology/musigma_vertical.nc")
|
| 190 |
+
hf_hub_download(
|
| 191 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 192 |
+
filename=f"climatology/{vert_in_scal_path.name}",
|
| 193 |
+
local_dir=".",
|
| 194 |
+
force_download=True,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
surf_out_scal_path = Path("./climatology/anomaly_variance_surface.nc")
|
| 198 |
+
hf_hub_download(
|
| 199 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 200 |
+
filename=f"climatology/{surf_out_scal_path.name}",
|
| 201 |
+
local_dir=".",
|
| 202 |
+
force_download=True,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
vert_out_scal_path = Path("./climatology/anomaly_variance_vertical.nc")
|
| 206 |
+
hf_hub_download(
|
| 207 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 208 |
+
filename=f"climatology/{vert_out_scal_path.name}",
|
| 209 |
+
local_dir=".",
|
| 210 |
+
force_download=True,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
in_mu, in_sig = input_scalers(
|
| 214 |
+
surface_vars,
|
| 215 |
+
vertical_vars,
|
| 216 |
+
levels,
|
| 217 |
+
surf_in_scal_path,
|
| 218 |
+
vert_in_scal_path,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
output_sig = output_scalers(
|
| 222 |
+
surface_vars,
|
| 223 |
+
vertical_vars,
|
| 224 |
+
levels,
|
| 225 |
+
surf_out_scal_path,
|
| 226 |
+
vert_out_scal_path,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
static_mu, static_sig = static_input_scalers(
|
| 230 |
+
surf_in_scal_path,
|
| 231 |
+
static_surface_vars,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
st.write("Setting up model...")
|
| 235 |
+
|
| 236 |
+
residual = "climate"
|
| 237 |
+
masking_mode = "local"
|
| 238 |
+
decoder_shifting = True
|
| 239 |
+
masking_ratio = 0.99
|
| 240 |
+
|
| 241 |
+
# Load model config
|
| 242 |
+
hf_hub_download(
|
| 243 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 244 |
+
filename="config.yaml",
|
| 245 |
+
local_dir=".",
|
| 246 |
+
force_download=True,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
with open("./config.yaml", "r") as f:
|
| 250 |
+
config = yaml.safe_load(f)
|
| 251 |
+
|
| 252 |
+
model = PrithviWxC(
|
| 253 |
+
in_channels=config["params"]["in_channels"],
|
| 254 |
+
input_size_time=config["params"]["input_size_time"],
|
| 255 |
+
in_channels_static=config["params"]["in_channels_static"],
|
| 256 |
+
input_scalers_mu=in_mu,
|
| 257 |
+
input_scalers_sigma=in_sig,
|
| 258 |
+
input_scalers_epsilon=config["params"]["input_scalers_epsilon"],
|
| 259 |
+
static_input_scalers_mu=static_mu,
|
| 260 |
+
static_input_scalers_sigma=static_sig,
|
| 261 |
+
static_input_scalers_epsilon=config["params"]["static_input_scalers_epsilon"],
|
| 262 |
+
output_scalers=output_sig**0.5,
|
| 263 |
+
n_lats_px=config["params"]["n_lats_px"],
|
| 264 |
+
n_lons_px=config["params"]["n_lons_px"],
|
| 265 |
+
patch_size_px=config["params"]["patch_size_px"],
|
| 266 |
+
mask_unit_size_px=config["params"]["mask_unit_size_px"],
|
| 267 |
+
mask_ratio_inputs=masking_ratio,
|
| 268 |
+
embed_dim=config["params"]["embed_dim"],
|
| 269 |
+
n_blocks_encoder=config["params"]["n_blocks_encoder"],
|
| 270 |
+
n_blocks_decoder=config["params"]["n_blocks_decoder"],
|
| 271 |
+
mlp_multiplier=config["params"]["mlp_multiplier"],
|
| 272 |
+
n_heads=config["params"]["n_heads"],
|
| 273 |
+
dropout=config["params"]["dropout"],
|
| 274 |
+
drop_path=config["params"]["drop_path"],
|
| 275 |
+
parameter_dropout=config["params"]["parameter_dropout"],
|
| 276 |
+
residual=residual,
|
| 277 |
+
masking_mode=masking_mode,
|
| 278 |
+
decoder_shifting=decoder_shifting,
|
| 279 |
+
positional_encoding=positional_encoding,
|
| 280 |
+
checkpoint_encoder=[],
|
| 281 |
+
checkpoint_decoder=[],
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
st.write("Loading model weights...")
|
| 285 |
+
|
| 286 |
+
weights_path = Path("./weights/prithvi.wxc.2300m.v1.pt")
|
| 287 |
+
hf_hub_download(
|
| 288 |
+
repo_id="Prithvi-WxC/prithvi.wxc.2300m.v1",
|
| 289 |
+
filename=weights_path.name,
|
| 290 |
+
local_dir="./weights",
|
| 291 |
+
force_download=True,
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
state_dict = torch.load(weights_path, map_location=device)
|
| 295 |
+
if "model_state" in state_dict:
|
| 296 |
+
state_dict = state_dict["model_state"]
|
| 297 |
+
model.load_state_dict(state_dict, strict=True)
|
| 298 |
+
|
| 299 |
+
model = model.to(device)
|
| 300 |
+
|
| 301 |
+
st.write("Model loaded and ready.")
|
| 302 |
+
|
| 303 |
+
if st.button("Run Inference"):
|
| 304 |
+
st.write("Running inference...")
|
| 305 |
+
|
| 306 |
+
data = next(iter(dataset))
|
| 307 |
+
batch = preproc([data], padding)
|
| 308 |
+
|
| 309 |
+
for k, v in batch.items():
|
| 310 |
+
if isinstance(v, torch.Tensor):
|
| 311 |
+
batch[k] = v.to(device)
|
| 312 |
+
|
| 313 |
+
with torch.no_grad():
|
| 314 |
+
model.eval()
|
| 315 |
+
out = model(batch)
|
| 316 |
+
|
| 317 |
+
st.write("Inference completed. Generating plot...")
|
| 318 |
+
|
| 319 |
+
t2m = out[0, 12].cpu().numpy()
|
| 320 |
+
|
| 321 |
+
lat = np.linspace(-90, 90, out.shape[-2])
|
| 322 |
+
lon = np.linspace(-180, 180, out.shape[-1])
|
| 323 |
+
X, Y = np.meshgrid(lon, lat)
|
| 324 |
+
|
| 325 |
+
fig, ax = plt.subplots()
|
| 326 |
+
cs = ax.contourf(X, Y, t2m, 100)
|
| 327 |
+
ax.set_aspect("equal")
|
| 328 |
+
plt.colorbar(cs)
|
| 329 |
+
st.pyplot(fig)
|
| 330 |
|
| 331 |
+
st.write("Plot generated.")
|
|
|