Spaces:
Runtime error
Runtime error
add json input
Browse files- app.py +74 -29
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,57 +1,102 @@
|
|
| 1 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 2 |
-
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 7 |
dtype = torch.float16
|
| 8 |
-
nsfw_pipe = pipeline("image-classification",
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
-
style_pipe = pipeline("image-classification",
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
aesthetic_pipe = pipeline("image-classification",
|
| 22 |
-
model=
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
device=device,
|
| 25 |
torch_dtype=dtype)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
style = style_pipe(pil_images)
|
| 34 |
aesthetic = aesthetic_pipe(pil_images)
|
| 35 |
nsfw = nsfw_pipe(pil_images)
|
| 36 |
-
results = [
|
| 37 |
label_data = {}
|
| 38 |
if image is not None:
|
| 39 |
-
label_data = {
|
| 40 |
-
|
| 41 |
-
return label_data,
|
|
|
|
| 42 |
|
| 43 |
with gr.Blocks() as blocks:
|
| 44 |
with gr.Row():
|
| 45 |
with gr.Column():
|
| 46 |
image = gr.Image(label="Image to test", type="filepath")
|
| 47 |
-
files = gr.File(label="Multipls Images", file_types=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
with gr.Column():
|
| 49 |
label = gr.Label(label="style")
|
| 50 |
results = gr.JSON(label="Results")
|
| 51 |
-
|
| 52 |
btn = gr.Button("Run")
|
| 53 |
-
|
| 54 |
-
btn.click(fn=predict, inputs=[
|
|
|
|
| 55 |
|
| 56 |
blocks.queue()
|
| 57 |
-
blocks.launch(debug=True,inline=True)
|
|
|
|
| 1 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 2 |
+
import torch
|
| 3 |
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
import aiohttp
|
| 7 |
+
import asyncio
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
|
| 10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 11 |
dtype = torch.float16
|
| 12 |
+
nsfw_pipe = pipeline("image-classification",
|
| 13 |
+
model=AutoModelForImageClassification.from_pretrained(
|
| 14 |
+
"carbon225/vit-base-patch16-224-hentai"),
|
| 15 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained(
|
| 16 |
+
"carbon225/vit-base-patch16-224-hentai"),
|
| 17 |
+
device=device,
|
| 18 |
+
torch_dtype=dtype)
|
| 19 |
|
| 20 |
|
| 21 |
+
style_pipe = pipeline("image-classification",
|
| 22 |
+
model=AutoModelForImageClassification.from_pretrained(
|
| 23 |
+
"cafeai/cafe_style"),
|
| 24 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained(
|
| 25 |
+
"cafeai/cafe_style"),
|
| 26 |
+
device=device,
|
| 27 |
+
torch_dtype=dtype)
|
| 28 |
|
| 29 |
+
aesthetic_pipe = pipeline("image-classification",
|
| 30 |
+
model=AutoModelForImageClassification.from_pretrained(
|
| 31 |
+
"cafeai/cafe_aesthetic"),
|
| 32 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained(
|
| 33 |
+
"cafeai/cafe_aesthetic"),
|
| 34 |
device=device,
|
| 35 |
torch_dtype=dtype)
|
| 36 |
|
| 37 |
+
|
| 38 |
+
async def fetch_image(session, image_url):
|
| 39 |
+
print(f"fetching image {image_url}")
|
| 40 |
+
async with session.get(image_url) as response:
|
| 41 |
+
if response.status == 200 and response.headers['content-type'].startswith('image'):
|
| 42 |
+
pil_image = Image.open(BytesIO(await response.read())).convert('RGB')
|
| 43 |
+
# resize image proportional
|
| 44 |
+
# image = ImageOps.fit(image, (400, 400), Image.LANCZOS)
|
| 45 |
+
|
| 46 |
+
return pil_image
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
async def fetch_images(image_urls):
|
| 51 |
+
async with aiohttp.ClientSession() as session:
|
| 52 |
+
tasks = [asyncio.ensure_future(fetch_image(
|
| 53 |
+
session, image_url)) for image_url in image_urls]
|
| 54 |
+
return await asyncio.gather(*tasks)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
async def predict(json=None, enable_gallery=True, image=None, files=None):
|
| 58 |
+
print(json)
|
| 59 |
+
|
| 60 |
+
if image or files:
|
| 61 |
+
if image is not None:
|
| 62 |
+
images_paths = [image]
|
| 63 |
+
elif files is not None:
|
| 64 |
+
images_paths = list(map(lambda x: x.name, files))
|
| 65 |
+
pil_images = [Image.open(image_path).convert("RGB")
|
| 66 |
+
for image_path in images_paths]
|
| 67 |
+
elif json is not None:
|
| 68 |
+
pil_images = await fetch_images(json["urls"])
|
| 69 |
+
|
| 70 |
style = style_pipe(pil_images)
|
| 71 |
aesthetic = aesthetic_pipe(pil_images)
|
| 72 |
nsfw = nsfw_pipe(pil_images)
|
| 73 |
+
results = [a + b + c for (a, b, c) in zip(style, aesthetic, nsfw)]
|
| 74 |
label_data = {}
|
| 75 |
if image is not None:
|
| 76 |
+
label_data = {row["label"]: row["score"] for row in results[0]}
|
| 77 |
+
|
| 78 |
+
return results, label_data, pil_images if enable_gallery else None
|
| 79 |
+
|
| 80 |
|
| 81 |
with gr.Blocks() as blocks:
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
image = gr.Image(label="Image to test", type="filepath")
|
| 85 |
+
files = gr.File(label="Multipls Images", file_types=[
|
| 86 |
+
"image"], file_count="multiple")
|
| 87 |
+
enable_gallery = gr.Checkbox(label="Enable Gallery", value=True)
|
| 88 |
+
json = gr.JSON(label="Results", value={"urls": [
|
| 89 |
+
'https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/b9fb3257-6a54-455e-b636-9d61cf261676.jpg',
|
| 90 |
+
'https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/062eb9be-76eb-4d7e-9299-d1ebea14b46f.jpg',
|
| 91 |
+
'https://d26smi9133w0oo.cloudfront.net/diffusers-gallery/8ff6d4f6-08d0-4a31-818c-4d32ab146f81.jpg']})
|
| 92 |
with gr.Column():
|
| 93 |
label = gr.Label(label="style")
|
| 94 |
results = gr.JSON(label="Results")
|
| 95 |
+
gallery = gr.Gallery().style(grid=[2], height="auto")
|
| 96 |
btn = gr.Button("Run")
|
| 97 |
+
|
| 98 |
+
btn.click(fn=predict, inputs=[json, enable_gallery, image, files],
|
| 99 |
+
outputs=[results, label, gallery], api_name="inference")
|
| 100 |
|
| 101 |
blocks.queue()
|
| 102 |
+
blocks.launch(debug=True, inline=True)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
transformers
|
| 2 |
gradio
|
| 3 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 4 |
-
torch
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
gradio
|
| 3 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 4 |
+
torch
|
| 5 |
+
aiohttp
|