Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load model and tokenizer
|
| 6 |
+
model_name = "VietAI/envit5-translation"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
def translate(text, source_lang):
|
| 11 |
+
"""Translate text based on the source language."""
|
| 12 |
+
input_text = f"{source_lang}: {text}"
|
| 13 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True).input_ids.to('cpu')
|
| 14 |
+
outputs = model.generate(inputs, max_length=512)
|
| 15 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 16 |
+
|
| 17 |
+
# Create UI
|
| 18 |
+
demo = gr.Interface(
|
| 19 |
+
fn=translate,
|
| 20 |
+
inputs=[gr.Textbox(label="Input Text"), gr.Radio(["vi", "en"], label="Source Language")],
|
| 21 |
+
outputs=gr.Textbox(label="Translated Text"),
|
| 22 |
+
title="VietAI Translation",
|
| 23 |
+
description="Translate between Vietnamese and English using envit5-translation model."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Launch app
|
| 27 |
+
demo.launch()
|