v1 app.py added
Browse files
app.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
| 4 |
+
import librosa
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
import tempfile
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
# Global variables for model and processor
|
| 11 |
+
processor = None
|
| 12 |
+
model = None
|
| 13 |
+
|
| 14 |
+
def load_model():
|
| 15 |
+
"""Load the Voxtral model and processor"""
|
| 16 |
+
global processor, model
|
| 17 |
+
|
| 18 |
+
if processor is not None and model is not None:
|
| 19 |
+
return processor, model
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
model_name = "mistralai/Voxtral-Small-24B-2507"
|
| 23 |
+
|
| 24 |
+
print("Loading Voxtral model... This may take a few minutes.")
|
| 25 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 26 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 27 |
+
model_name,
|
| 28 |
+
torch_dtype=torch.float16,
|
| 29 |
+
device_map="auto",
|
| 30 |
+
low_cpu_mem_usage=True,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
print("Model loaded successfully!")
|
| 35 |
+
return processor, model
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error loading model: {str(e)}")
|
| 39 |
+
return None, None
|
| 40 |
+
|
| 41 |
+
def transcribe_audio(audio_file):
|
| 42 |
+
"""Process audio file and return transcription"""
|
| 43 |
+
if audio_file is None:
|
| 44 |
+
return "Please upload an audio file.", "", ""
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# Load model if not already loaded
|
| 48 |
+
global processor, model
|
| 49 |
+
if processor is None or model is None:
|
| 50 |
+
processor, model = load_model()
|
| 51 |
+
|
| 52 |
+
if processor is None or model is None:
|
| 53 |
+
return "Error: Model failed to load. Please try again.", "", ""
|
| 54 |
+
|
| 55 |
+
# Load audio file
|
| 56 |
+
if isinstance(audio_file, str):
|
| 57 |
+
# If it's a file path
|
| 58 |
+
audio, sample_rate = librosa.load(audio_file, sr=16000)
|
| 59 |
+
else:
|
| 60 |
+
# If it's uploaded file data
|
| 61 |
+
audio, sample_rate = librosa.load(audio_file.name, sr=16000)
|
| 62 |
+
|
| 63 |
+
# Calculate duration
|
| 64 |
+
duration = len(audio) / sample_rate
|
| 65 |
+
|
| 66 |
+
# Process with the model
|
| 67 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 68 |
+
|
| 69 |
+
# Move inputs to the same device as model
|
| 70 |
+
if torch.cuda.is_available():
|
| 71 |
+
inputs = {k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 72 |
+
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
predicted_ids = model.generate(**inputs, max_length=512)
|
| 75 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 76 |
+
|
| 77 |
+
# Generate file info
|
| 78 |
+
word_count = len(transcription.split())
|
| 79 |
+
file_info = f"Duration: {duration:.2f} seconds | Words: {word_count} | Processed: {datetime.now().strftime('%H:%M:%S')}"
|
| 80 |
+
|
| 81 |
+
return transcription, file_info, transcription # Return transcription twice for download
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
error_msg = f"Error processing audio: {str(e)}"
|
| 85 |
+
print(error_msg)
|
| 86 |
+
return error_msg, "", ""
|
| 87 |
+
|
| 88 |
+
def clear_inputs():
|
| 89 |
+
"""Clear all inputs and outputs"""
|
| 90 |
+
return None, "", "", ""
|
| 91 |
+
|
| 92 |
+
# Custom CSS for better styling
|
| 93 |
+
css = """
|
| 94 |
+
.gradio-container {
|
| 95 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
.main-header {
|
| 99 |
+
text-align: center;
|
| 100 |
+
color: #2d5aa0;
|
| 101 |
+
margin-bottom: 20px;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.info-box {
|
| 105 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 106 |
+
color: white;
|
| 107 |
+
padding: 20px;
|
| 108 |
+
border-radius: 10px;
|
| 109 |
+
margin: 10px 0;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
.result-box {
|
| 113 |
+
background-color: #f8f9fa;
|
| 114 |
+
border: 1px solid #e9ecef;
|
| 115 |
+
border-radius: 8px;
|
| 116 |
+
padding: 15px;
|
| 117 |
+
margin: 10px 0;
|
| 118 |
+
}
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
# Create the Gradio interface
|
| 122 |
+
def create_interface():
|
| 123 |
+
with gr.Blocks(css=css, title="Voxtral-Small-24B Speech Recognition") as demo:
|
| 124 |
+
|
| 125 |
+
# Header
|
| 126 |
+
gr.Markdown(
|
| 127 |
+
"""
|
| 128 |
+
# π€ Voxtral-Small-24B Speech Recognition
|
| 129 |
+
|
| 130 |
+
Upload an audio file to transcribe it using Mistral AI's Voxtral-Small-24B-2507 model.
|
| 131 |
+
""",
|
| 132 |
+
elem_classes=["main-header"]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Model info
|
| 136 |
+
with gr.Accordion("βΉοΈ About this model", open=False):
|
| 137 |
+
gr.Markdown(
|
| 138 |
+
"""
|
| 139 |
+
**Voxtral-Small-24B-2507** is a speech-to-text model developed by Mistral AI.
|
| 140 |
+
|
| 141 |
+
- **Model**: mistralai/Voxtral-Small-24B-2507
|
| 142 |
+
- **Type**: Speech-to-Text Transformation
|
| 143 |
+
- **Developer**: Mistral AI
|
| 144 |
+
- **Use Case**: Audio transcription and speech recognition
|
| 145 |
+
- **Supported Formats**: WAV, MP3, FLAC, M4A, OGG
|
| 146 |
+
|
| 147 |
+
π‘ **Tip**: For best results, use clear audio files with minimal background noise.
|
| 148 |
+
"""
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
with gr.Row():
|
| 152 |
+
with gr.Column(scale=1):
|
| 153 |
+
# Audio input
|
| 154 |
+
audio_input = gr.Audio(
|
| 155 |
+
label="π Upload Audio File",
|
| 156 |
+
type="filepath",
|
| 157 |
+
sources=["upload", "microphone"]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Control buttons
|
| 161 |
+
with gr.Row():
|
| 162 |
+
transcribe_btn = gr.Button(
|
| 163 |
+
"π Transcribe Audio",
|
| 164 |
+
variant="primary",
|
| 165 |
+
size="lg"
|
| 166 |
+
)
|
| 167 |
+
clear_btn = gr.Button(
|
| 168 |
+
"ποΈ Clear",
|
| 169 |
+
variant="secondary"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
with gr.Column(scale=1):
|
| 173 |
+
# Results
|
| 174 |
+
transcription_output = gr.Textbox(
|
| 175 |
+
label="π Transcription Result",
|
| 176 |
+
lines=8,
|
| 177 |
+
max_lines=15,
|
| 178 |
+
placeholder="Transcribed text will appear here...",
|
| 179 |
+
show_copy_button=True
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# File info
|
| 183 |
+
info_output = gr.Textbox(
|
| 184 |
+
label="π Audio Information",
|
| 185 |
+
lines=1,
|
| 186 |
+
placeholder="Audio details will appear here..."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Download option
|
| 190 |
+
download_file = gr.File(
|
| 191 |
+
label="πΎ Download Transcription",
|
| 192 |
+
visible=False
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Hidden textbox for file content (for download)
|
| 196 |
+
hidden_text = gr.Textbox(visible=False)
|
| 197 |
+
|
| 198 |
+
# Event handlers
|
| 199 |
+
transcribe_btn.click(
|
| 200 |
+
fn=transcribe_audio,
|
| 201 |
+
inputs=[audio_input],
|
| 202 |
+
outputs=[transcription_output, info_output, hidden_text],
|
| 203 |
+
show_progress=True
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# Update download file when transcription is complete
|
| 207 |
+
def update_download(text_content):
|
| 208 |
+
if text_content and text_content.strip():
|
| 209 |
+
# Create a temporary file with the transcription
|
| 210 |
+
temp_file = tempfile.NamedTemporaryFile(
|
| 211 |
+
mode='w',
|
| 212 |
+
delete=False,
|
| 213 |
+
suffix='.txt',
|
| 214 |
+
prefix='transcription_'
|
| 215 |
+
)
|
| 216 |
+
temp_file.write(text_content)
|
| 217 |
+
temp_file.close()
|
| 218 |
+
return gr.File(value=temp_file.name, visible=True)
|
| 219 |
+
else:
|
| 220 |
+
return gr.File(visible=False)
|
| 221 |
+
|
| 222 |
+
hidden_text.change(
|
| 223 |
+
fn=update_download,
|
| 224 |
+
inputs=[hidden_text],
|
| 225 |
+
outputs=[download_file]
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
clear_btn.click(
|
| 229 |
+
fn=clear_inputs,
|
| 230 |
+
outputs=[audio_input, transcription_output, info_output, hidden_text]
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Footer
|
| 234 |
+
gr.Markdown(
|
| 235 |
+
"""
|
| 236 |
+
---
|
| 237 |
+
|
| 238 |
+
### π οΈ Usage Instructions:
|
| 239 |
+
1. **Upload**: Click on the audio input area to upload a file or use your microphone
|
| 240 |
+
2. **Transcribe**: Click the "Transcribe Audio" button to process your audio
|
| 241 |
+
3. **Results**: View your transcription in the text area on the right
|
| 242 |
+
4. **Download**: Use the download button to save your transcription as a text file
|
| 243 |
+
|
| 244 |
+
**Supported formats**: WAV, MP3, FLAC, M4A, OGG
|
| 245 |
+
"""
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
return demo
|
| 249 |
+
|
| 250 |
+
# Initialize and launch the app
|
| 251 |
+
if __name__ == "__main__":
|
| 252 |
+
# Pre-load the model when the app starts
|
| 253 |
+
print("Initializing Voxtral model...")
|
| 254 |
+
load_model()
|
| 255 |
+
|
| 256 |
+
# Create and launch the interface
|
| 257 |
+
demo = create_interface()
|
| 258 |
+
demo.launch(
|
| 259 |
+
share=True,
|
| 260 |
+
show_error=True,
|
| 261 |
+
server_name="0.0.0.0",
|
| 262 |
+
server_port=7860
|
| 263 |
+
)
|