Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from PIL import Image | |
| import numpy as np | |
| from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
| import gradio as gr | |
| import spaces | |
| import os | |
| def resize_image(image, max_size=2048): | |
| width, height = image.size | |
| if width > max_size or height > max_size: | |
| aspect_ratio = width / height | |
| if width > height: | |
| new_width = max_size | |
| new_height = int(new_width / aspect_ratio) | |
| else: | |
| new_height = max_size | |
| new_width = int(new_height * aspect_ratio) | |
| image = image.resize((new_width, new_height), Image.LANCZOS) | |
| return image | |
| def split_image(image, chunk_size=512): | |
| width, height = image.size | |
| chunks = [] | |
| for y in range(0, height, chunk_size): | |
| for x in range(0, width, chunk_size): | |
| chunk = image.crop((x, y, min(x + chunk_size, width), min(y + chunk_size, height))) | |
| chunks.append((chunk, x, y)) | |
| return chunks | |
| def stitch_image(chunks, original_size): | |
| result = Image.new('RGB', original_size) | |
| for img, x, y in chunks: | |
| result.paste(img, (x, y)) | |
| return result | |
| def upscale_chunk(chunk, model, processor, device): | |
| inputs = processor(chunk, return_tensors="pt") | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| output = outputs.reconstruction.data.squeeze().cpu().float().clamp_(0, 1).numpy() | |
| output = np.moveaxis(output, source=0, destination=-1) | |
| output_image = (output * 255.0).round().astype(np.uint8) | |
| return Image.fromarray(output_image) | |
| def remove_boundary(image, boundary=32): | |
| return image.crop((0, 0, image.width - boundary, image.height - boundary)) | |
| def main(image, original_filename, model_choice, save_as_jpg=True, use_tiling=True): | |
| image = resize_image(image) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model_paths = { | |
| "Pixel Perfect": "caidas/swin2SR-classical-sr-x4-64", | |
| "PSNR Match (Recommended)": "caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr" | |
| } | |
| processor = AutoImageProcessor.from_pretrained(model_paths[model_choice]) | |
| model = Swin2SRForImageSuperResolution.from_pretrained(model_paths[model_choice]).to(device) | |
| if use_tiling: | |
| chunks = split_image(image) | |
| upscaled_chunks = [] | |
| for chunk, x, y in chunks: | |
| upscaled_chunk = upscale_chunk(chunk, model, processor, device) | |
| upscaled_chunk = remove_boundary(upscaled_chunk) | |
| upscaled_chunks.append((upscaled_chunk, x * 4, y * 4)) | |
| upscaled_image = stitch_image(upscaled_chunks, (image.width * 4, image.height * 4)) | |
| else: | |
| upscaled_image = upscale_chunk(image, model, processor, device) | |
| upscaled_image = remove_boundary(upscaled_image) | |
| original_basename = os.path.splitext(original_filename)[0] if original_filename else "image" | |
| output_filename = f"{original_basename}_upscaled" | |
| if save_as_jpg: | |
| output_filename += ".jpg" | |
| upscaled_image.save(output_filename, quality=95) | |
| else: | |
| output_filename += ".png" | |
| upscaled_image.save(output_filename) | |
| return output_filename | |
| def gradio_interface(image, model_choice, save_as_jpg, use_tiling): | |
| try: | |
| original_filename = getattr(image, 'name', 'image') | |
| result = main(image, original_filename, model_choice, save_as_jpg, use_tiling) | |
| return result, None | |
| except Exception as e: | |
| return None, str(e) | |
| interface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Dropdown( | |
| choices=["PSNR Match (Recommended)", "Pixel Perfect"], | |
| label="Select Model", | |
| value="PSNR Match (Recommended)" | |
| ), | |
| gr.Checkbox(value=True, label="Save as JPEG"), | |
| gr.Checkbox(value=True, label="Use Tiling"), | |
| ], | |
| outputs=[ | |
| gr.File(label="Download Upscaled Image"), | |
| gr.Textbox(label="Error Message", visible=True) | |
| ], | |
| title="Image Upscaler", | |
| description="Upload an image, select a model, and upscale it. Images larger than 2048x2048 will be resized while maintaining aspect ratio. Use tiling for efficient processing of large images.", | |
| ) | |
| interface.launch() |