Spaces:
Sleeping
Sleeping
adding demo
Browse files- app.py +211 -0
- image_examples/RV.jpeg +0 -0
- image_examples/__init__.py +0 -0
- image_examples/biker.jpeg +0 -0
- image_examples/dog.jpeg +0 -0
- image_examples/fish.jpeg +0 -0
- image_examples/mower.jpeg +0 -0
- modelguidedattacks/cls_models/registry.py +51 -0
- modelguidedattacks/guides/unguided.py +4 -0
- quadattack_pipeline.pdf +0 -0
- testing.md +1 -0
app.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import types
|
| 3 |
+
import timm
|
| 4 |
+
import requests
|
| 5 |
+
import random
|
| 6 |
+
import yaml
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from timm import create_model
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from timm.data import resolve_data_config
|
| 12 |
+
from modelguidedattacks.guides.unguided import Unguided
|
| 13 |
+
from timm.data.transforms_factory import create_transform
|
| 14 |
+
from modelguidedattacks.cls_models.registry import TimmPretrainModelWrapper
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Download human-readable labels for ImageNet.
|
| 18 |
+
IMAGENET_LABELS_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
|
| 19 |
+
LABELS = requests.get(IMAGENET_LABELS_URL).text.strip().split("\n")
|
| 20 |
+
SORTED_LABELS = sorted(LABELS.copy(), key=lambda s: s.lower())
|
| 21 |
+
|
| 22 |
+
def get_timm_model(name):
|
| 23 |
+
"""Retrieves model from timm library by name with weights loaded.
|
| 24 |
+
"""
|
| 25 |
+
model = create_model(name,pretrained="true")
|
| 26 |
+
transform = create_transform(**resolve_data_config({}, model=model))
|
| 27 |
+
model = model.eval()
|
| 28 |
+
return model, transform
|
| 29 |
+
|
| 30 |
+
def create_attacker(model, transform, iterations):
|
| 31 |
+
""" Instantiates an QuadAttack Model.
|
| 32 |
+
"""
|
| 33 |
+
# config_dict = {"cvx_proj_margin" : 0.2,
|
| 34 |
+
# "opt_warmup_its": 5}
|
| 35 |
+
with open("base_config.yaml") as f:
|
| 36 |
+
config_dict = yaml.safe_load(f)
|
| 37 |
+
|
| 38 |
+
config = types.SimpleNamespace(**config_dict)
|
| 39 |
+
|
| 40 |
+
attacker = Unguided(TimmPretrainModelWrapper(model, transform,"", "", ""), config, iterations=iterations,
|
| 41 |
+
lr=0.002, topk_loss_coef_upper=10)
|
| 42 |
+
|
| 43 |
+
return attacker
|
| 44 |
+
|
| 45 |
+
def predict_topk_accuracies(img, k, iters, model_name, desired_labels, button=None, progress=gr.Progress(track_tqdm=True)):
|
| 46 |
+
""" Predict the top K results using base model and attacker model.
|
| 47 |
+
"""
|
| 48 |
+
label_inds = list(range(0,1000)) #label indices
|
| 49 |
+
# convert user desired labels to desired inds
|
| 50 |
+
desired_inds = [LABELS.index(name) for name in desired_labels]
|
| 51 |
+
# remove selected before randomly sampling the rest
|
| 52 |
+
for ind in desired_inds:
|
| 53 |
+
label_inds.remove(ind)
|
| 54 |
+
|
| 55 |
+
# fill up user selections to top k results
|
| 56 |
+
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds))
|
| 57 |
+
tensorized_desired_inds = torch.tensor(desired_inds).unsqueeze(0) #[B,K]
|
| 58 |
+
|
| 59 |
+
model, transform = get_timm_model(model_name)
|
| 60 |
+
|
| 61 |
+
# Define a transformation to convert PIL image to a tensor
|
| 62 |
+
normalization = transforms.Compose([
|
| 63 |
+
transform.transforms[-1] # Converts to a PyTorch tensor
|
| 64 |
+
])
|
| 65 |
+
preprocess = transforms.Compose(
|
| 66 |
+
transform.transforms[:-1] # Converts to a PyTorch tensor
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
attacker = create_attacker(model, normalization, iters)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
img = img.convert('RGB')
|
| 73 |
+
orig_img = img.copy()
|
| 74 |
+
orig_img = preprocess(orig_img)
|
| 75 |
+
orig_img = orig_img.unsqueeze(0)
|
| 76 |
+
img = transform(img).unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = model(img)
|
| 80 |
+
attack_outputs, attack_img = attacker(orig_img, tensorized_desired_inds, None)
|
| 81 |
+
|
| 82 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
| 83 |
+
attacker_probs = torch.nn.functional.softmax(attack_outputs[0], dim=0)
|
| 84 |
+
|
| 85 |
+
values, indices = torch.topk(probabilities, k)
|
| 86 |
+
|
| 87 |
+
attack_vals, attack_inds = torch.topk(attacker_probs, k)
|
| 88 |
+
|
| 89 |
+
attack_img_out = orig_img + attack_img #B C H W
|
| 90 |
+
# Convert the PyTorch tensor to a NumPy array
|
| 91 |
+
attack_img_out = attack_img_out.squeeze(0) # C H W
|
| 92 |
+
attack_img_out = attack_img_out.permute(1, 2, 0).numpy() # H W C
|
| 93 |
+
|
| 94 |
+
orig_img = orig_img.squeeze(0)
|
| 95 |
+
orig_img = orig_img.permute(1, 2, 0).numpy()
|
| 96 |
+
|
| 97 |
+
attack_img = attack_img.squeeze(0)
|
| 98 |
+
attack_img = attack_img.permute(1, 2, 0).numpy()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# Convert the NumPy array to a PIL image
|
| 102 |
+
attack_img_out = Image.fromarray((attack_img_out * 255).astype('uint8'))
|
| 103 |
+
orig_img = Image.fromarray((orig_img * 255).astype('uint8'))
|
| 104 |
+
attack_img = Image.fromarray((attack_img * 255).astype('uint8'))
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
return (orig_img, attack_img_out, attack_img,{LABELS[i]: v.item() for i, v in zip(indices, values)}, {LABELS[i]: v.item() for i, v in zip(attack_inds, attack_vals)})
|
| 108 |
+
|
| 109 |
+
def random_fill_classes(desired_labels, k):
|
| 110 |
+
|
| 111 |
+
label_inds = list(range(0,1000)) #label indices
|
| 112 |
+
# convert user desired labels to desired inds
|
| 113 |
+
if len(desired_labels) > k:
|
| 114 |
+
desired_labels = desired_labels[:k]
|
| 115 |
+
desired_inds = [LABELS.index(name) for name in desired_labels]
|
| 116 |
+
# remove selected before randomly sampling the rest
|
| 117 |
+
for ind in desired_inds:
|
| 118 |
+
label_inds.remove(ind)
|
| 119 |
+
|
| 120 |
+
# fill up user selections to top k results
|
| 121 |
+
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds))
|
| 122 |
+
|
| 123 |
+
return [LABELS[ind] for ind in desired_inds]
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
input_img = gr.Image(type='pil')
|
| 127 |
+
top_k_slider = gr.Slider(2, 20, value=10, step=1, label="Top K predictions", info="Choose between 2 and 20")
|
| 128 |
+
iteration_slider = gr.Slider(30, 1000, value=60, step=1, label="QuadAttack Iterations", info="Choose how many iterations to optimize using QuadAttack! (Usually <= 60 is enough)")
|
| 129 |
+
model_choice_list = gr.Dropdown(
|
| 130 |
+
timm.list_models(), value="vit_base_patch16_224", label="timm model name", info="Currently only supporting timm models! See code for models used in paper."
|
| 131 |
+
)
|
| 132 |
+
desired_labels = gr.Dropdown(
|
| 133 |
+
SORTED_LABELS, max_choices=20,filterable=True, multiselect=True, label="Desired Labels for QuadAttack", info="Select classes you wish to output from an attack. \
|
| 134 |
+
Classes will be ranked in order listed and randomly filled up to \
|
| 135 |
+
K if < K options are selected."
|
| 136 |
+
)
|
| 137 |
+
button = gr.Button("Randomly fill Top-K attack classes.")
|
| 138 |
+
|
| 139 |
+
desc = r'<div align="center">Authors: Thomas Paniagua, Ryan Grainger, Tianfu Wu <p><a href="https://arxiv.org/abs/2312.11510">Paper</a><br><a href="https://github.com/thomaspaniagua/quadattack">Code</a></p> </div>'
|
| 140 |
+
with gr.Interface(predict_topk_accuracies,
|
| 141 |
+
inputs=[input_img,
|
| 142 |
+
top_k_slider,
|
| 143 |
+
iteration_slider,
|
| 144 |
+
model_choice_list,
|
| 145 |
+
desired_labels,
|
| 146 |
+
button],
|
| 147 |
+
outputs=[
|
| 148 |
+
gr.Image(type='pil', label="Input Image"),
|
| 149 |
+
gr.Image(type='pil', label="Perturbed Image"),
|
| 150 |
+
gr.Image(type='pil', label="Added Noise"),
|
| 151 |
+
gr.Label(label="Original Top K"),
|
| 152 |
+
gr.Label(label="QuadAttack Top K"),
|
| 153 |
+
# gr.Image(type='pil', label="Perturbed Image")
|
| 154 |
+
],
|
| 155 |
+
title='QuadAttack!',
|
| 156 |
+
description= desc,
|
| 157 |
+
cache_examples=False,
|
| 158 |
+
allow_flagging="never",
|
| 159 |
+
thumbnail= "quadattack_pipeline.pdf",
|
| 160 |
+
examples = [["image_examples/RV.jpeg", 5, 30, "vit_base_patch16_224", None, None
|
| 161 |
+
# ["lemon", "plastic_bag", "hay", "tripod", "bell_cote, bell_cot"]
|
| 162 |
+
],
|
| 163 |
+
# ["image_examples/biker.jpeg", 10, 60, "swinv2_cr_base_224", None, None
|
| 164 |
+
|
| 165 |
+
# ["hog, pig, grunter, squealer, Sus_scrofa",
|
| 166 |
+
# "lesser_panda, red_panda, panda, bear_cat, cat_bear, Ailurus_fulgens",
|
| 167 |
+
# "caldron, cauldron", "dowitcher", "water_tower", "quill, quill_pen",
|
| 168 |
+
# "balance_beam, beam", "unicycle, monocycle", "pencil_sharpener",
|
| 169 |
+
# "puffer, pufferfish, blowfish, globefish"
|
| 170 |
+
# ]
|
| 171 |
+
# ],
|
| 172 |
+
["image_examples/mower.jpeg", 15, 100,"wide_resnet101_2", None , None
|
| 173 |
+
|
| 174 |
+
# ["washbasin, handbasin, washbowl, lavabo, wash-hand_basin",
|
| 175 |
+
# "cucumber, cuke", "bolete", "oboe, hautboy, hautboi", "crane",
|
| 176 |
+
# "wolf_spider, hunting_spider", "Norfolk_terrier", "nail", "sidewinder, horned_rattlesnake, Crotalus_cerastes",
|
| 177 |
+
# "cannon", "beaker", "Shetland_sheepdog, Shetland_sheep_dog, Shetland",
|
| 178 |
+
# "monitor", "restaurant, eating_house, eating_place, eatery", "electric_fan, blower"
|
| 179 |
+
# ]
|
| 180 |
+
],
|
| 181 |
+
# ["image_examples/dog.jpeg", 20, 150, "xcit_small_12_p8_224", None, None
|
| 182 |
+
|
| 183 |
+
# ["church, church_building", "axolotl, mud_puppy, Ambystoma_mexicanum",
|
| 184 |
+
# "Scotch_terrier, Scottish_terrier, Scottie", "black-footed_ferret, ferret, Mustela_nigripes",
|
| 185 |
+
# "lab_coat, laboratory_coat", "gyromitra", "grasshopper, hopper", "snail", "tabby, tabby_cat",
|
| 186 |
+
# "bell_cote, bell_cot", "Indian_cobra, Naja_naja", "robin, American_robin, Turdus_migratorius",
|
| 187 |
+
# "tiger_cat", "book_jacket, dust_cover, dust_jacket, dust_wrapper", "loudspeaker, speaker, speaker_unit, loudspeaker_system, speaker_system",
|
| 188 |
+
# "washbasin, handbasin, washbowl, lavabo, wash-hand_basin", "electric_guitar", "armadillo", "ski_mask",
|
| 189 |
+
# "convertible"
|
| 190 |
+
# ]
|
| 191 |
+
|
| 192 |
+
# ],
|
| 193 |
+
["image_examples/fish.jpeg", 10, 100, "pvt_v2_b0", None, None
|
| 194 |
+
|
| 195 |
+
# ["ground_beetle, carabid_beetle", "sunscreen, sunblock, sun_blocker", "brass, memorial_tablet, plaque", "Irish_terrier", "head_cabbage", "bathtub, bathing_tub, bath, tub",
|
| 196 |
+
# "centipede", "squirrel_monkey, Saimiri_sciureus", "Chihuahua", "hourglass"
|
| 197 |
+
# ]
|
| 198 |
+
]
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
).queue() as app:
|
| 202 |
+
#turn off clear button as it erases globals
|
| 203 |
+
for block in app.blocks:
|
| 204 |
+
if isinstance(app.blocks[block],gr.Button):
|
| 205 |
+
if app.blocks[block].value == "Clear":
|
| 206 |
+
app.blocks[block].visible=False
|
| 207 |
+
button.click(random_fill_classes, inputs=[desired_labels,top_k_slider], outputs=desired_labels)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
app.launch(server_port=9000)
|
image_examples/RV.jpeg
ADDED
|
image_examples/__init__.py
ADDED
|
File without changes
|
image_examples/biker.jpeg
ADDED
|
image_examples/dog.jpeg
ADDED
|
image_examples/fish.jpeg
ADDED
|
image_examples/mower.jpeg
ADDED
|
modelguidedattacks/cls_models/registry.py
CHANGED
|
@@ -31,6 +31,57 @@ class ClsModel(nn.Module):
|
|
| 31 |
|
| 32 |
raise NotImplementedError("Forward not implemented for base class")
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
class MMPretrainModelWrapper(ClsModel):
|
| 35 |
"""
|
| 36 |
Calls data preprocessing for model before entering forward
|
|
|
|
| 31 |
|
| 32 |
raise NotImplementedError("Forward not implemented for base class")
|
| 33 |
|
| 34 |
+
class TimmPretrainModelWrapper(ClsModel):
|
| 35 |
+
"""
|
| 36 |
+
Calls data preprocessing for model before entering forward
|
| 37 |
+
"""
|
| 38 |
+
def __init__(self, model: nn.Module, transform, dataset_name: str, model_name: str, device: str) -> None:
|
| 39 |
+
super().__init__(dataset_name, model_name, device)
|
| 40 |
+
self.model = model
|
| 41 |
+
self.transform = transform
|
| 42 |
+
|
| 43 |
+
@property
|
| 44 |
+
def final_linear_layer(self):
|
| 45 |
+
try:
|
| 46 |
+
testing_head = self.model.head
|
| 47 |
+
head = True
|
| 48 |
+
except:
|
| 49 |
+
head = False
|
| 50 |
+
|
| 51 |
+
if head:
|
| 52 |
+
if isinstance(self.model.head, torch.nn.Linear):
|
| 53 |
+
return self.model.head
|
| 54 |
+
else:
|
| 55 |
+
return self.model.head.fc
|
| 56 |
+
else:
|
| 57 |
+
return self.model.fc
|
| 58 |
+
|
| 59 |
+
def head_features(self):
|
| 60 |
+
return self.final_linear_layer.in_features
|
| 61 |
+
|
| 62 |
+
def num_classes(self):
|
| 63 |
+
return self.final_linear_layer.out_features
|
| 64 |
+
|
| 65 |
+
def head(self, feats):
|
| 66 |
+
return self.model.head((feats,))
|
| 67 |
+
|
| 68 |
+
def head_matrices(self):
|
| 69 |
+
return self.final_linear_layer.weight, self.final_linear_layer.bias
|
| 70 |
+
|
| 71 |
+
def forward(self, x, return_features=False):
|
| 72 |
+
x = self.transform(x)
|
| 73 |
+
if return_features:
|
| 74 |
+
feats = self.model.forward_features(x)
|
| 75 |
+
logits = self.model.forward_head(feats, pre_logits=True)
|
| 76 |
+
try:
|
| 77 |
+
preds = self.model.fc(logits) # convnet,
|
| 78 |
+
except:
|
| 79 |
+
preds = self.model.head(logits) # vit
|
| 80 |
+
|
| 81 |
+
return preds, logits
|
| 82 |
+
else:
|
| 83 |
+
return self.model(x)
|
| 84 |
+
|
| 85 |
class MMPretrainModelWrapper(ClsModel):
|
| 86 |
"""
|
| 87 |
Calls data preprocessing for model before entering forward
|
modelguidedattacks/guides/unguided.py
CHANGED
|
@@ -63,6 +63,10 @@ class Unguided(nn.Module):
|
|
| 63 |
|
| 64 |
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
| 65 |
device=x.device)*2e-3)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
with torch.no_grad():
|
| 68 |
prediction_logits_0, prediction_feats_0 \
|
|
|
|
| 63 |
|
| 64 |
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
| 65 |
device=x.device)*2e-3)
|
| 66 |
+
|
| 67 |
+
optimizer = self.optimizer([x_perturbation], lr=self.lr)
|
| 68 |
+
|
| 69 |
+
precomputed_state = self.loss.precompute(attack_targets, gt_labels, self.config)
|
| 70 |
|
| 71 |
with torch.no_grad():
|
| 72 |
prediction_logits_0, prediction_feats_0 \
|
quadattack_pipeline.pdf
ADDED
|
Binary file (111 kB). View file
|
|
|
testing.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
<\center> #QuadAttack
|