Spaces:
Configuration error
Configuration error
| import torch | |
| import torch as th | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ldm.modules.diffusionmodules.util import ( | |
| conv_nd, | |
| linear, | |
| zero_module, | |
| timestep_embedding | |
| ) | |
| from einops import rearrange | |
| from ldm.modules.attention import SpatialTransformer | |
| from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
| from ldm.util import exists | |
| class StableVITON(UNetModel): | |
| def __init__( | |
| self, | |
| dim_head_denorm=1, | |
| *args, | |
| **kwargs, | |
| ): | |
| super().__init__(*args, **kwargs) | |
| warp_flow_blks = [] | |
| warp_zero_convs = [] | |
| self.encode_output_chs = [ | |
| 320, | |
| 320, | |
| 640, | |
| 640, | |
| 640, | |
| 1280, | |
| 1280, | |
| 1280, | |
| 1280 | |
| ] | |
| self.encode_output_chs2 = [ | |
| 320, | |
| 320, | |
| 320, | |
| 320, | |
| 640, | |
| 640, | |
| 640, | |
| 1280, | |
| 1280 | |
| ] | |
| for in_ch, cont_ch in zip(self.encode_output_chs, self.encode_output_chs2): | |
| dim_head = in_ch // self.num_heads | |
| dim_head = dim_head // dim_head_denorm | |
| warp_flow_blks.append(SpatialTransformer( | |
| in_channels=in_ch, | |
| n_heads=self.num_heads, | |
| d_head=dim_head, | |
| depth=self.transformer_depth, | |
| context_dim=cont_ch, | |
| use_linear=self.use_linear_in_transformer, | |
| use_checkpoint=self.use_checkpoint, | |
| )) | |
| warp_zero_convs.append(self.make_zero_conv(in_ch)) | |
| self.warp_flow_blks = nn.ModuleList(reversed(warp_flow_blks)) | |
| self.warp_zero_convs = nn.ModuleList(reversed(warp_zero_convs)) | |
| def make_zero_conv(self, channels): | |
| return zero_module(conv_nd(2, channels, channels, 1, padding=0)) | |
| def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): | |
| hs = [] | |
| with torch.no_grad(): | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| h = x.type(self.dtype) | |
| for module in self.input_blocks: | |
| h = module(h, emb, context) | |
| hs.append(h) | |
| h = self.middle_block(h, emb, context) | |
| if control is not None: | |
| hint = control.pop() | |
| for module in self.output_blocks[:3]: | |
| control.pop() | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context) | |
| n_warp = len(self.encode_output_chs) | |
| for i, (module, warp_blk, warp_zc) in enumerate(zip(self.output_blocks[3:n_warp+3], self.warp_flow_blks, self.warp_zero_convs)): | |
| if control is None or (h.shape[-2] == 8 and h.shape[-1] == 6): | |
| assert 0, f"shape is wrong : {h.shape}" | |
| else: | |
| hint = control.pop() | |
| h = self.warp(h, hint, warp_blk, warp_zc) | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context) | |
| for module in self.output_blocks[n_warp+3:]: | |
| if control is None: | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| else: | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context) | |
| h = h.type(x.dtype) | |
| return self.out(h) | |
| def warp(self, x, hint, crossattn_layer, zero_conv, mask1=None, mask2=None): | |
| hint = rearrange(hint, "b c h w -> b (h w) c").contiguous() | |
| output = crossattn_layer(x, hint) | |
| output = zero_conv(output) | |
| return output + x | |
| class NoZeroConvControlNet(nn.Module): | |
| def __init__( | |
| self, | |
| image_size, | |
| in_channels, | |
| model_channels, | |
| hint_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| use_checkpoint=False, | |
| use_fp16=False, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| num_heads_upsample=-1, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| use_new_attention_order=False, | |
| use_spatial_transformer=False, # custom transformer support | |
| transformer_depth=1, # custom transformer support | |
| context_dim=None, # custom transformer support | |
| n_embed=None, | |
| legacy=True, | |
| disable_self_attentions=None, | |
| num_attention_blocks=None, | |
| disable_middle_self_attn=False, | |
| use_linear_in_transformer=False, | |
| use_VAEdownsample=False, | |
| cond_first_ch=8, | |
| ): | |
| super().__init__() | |
| if use_spatial_transformer: | |
| assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
| if context_dim is not None: | |
| assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
| from omegaconf.listconfig import ListConfig | |
| if type(context_dim) == ListConfig: | |
| context_dim = list(context_dim) | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.dims = dims | |
| self.image_size = image_size | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| if isinstance(num_res_blocks, int): | |
| self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: | |
| if len(num_res_blocks) != len(channel_mult): | |
| raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
| "as a list/tuple (per-level) with the same length as channel_mult") | |
| self.num_res_blocks = num_res_blocks | |
| if disable_self_attentions is not None: | |
| # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
| assert len(disable_self_attentions) == len(channel_mult) | |
| if num_attention_blocks is not None: | |
| assert len(num_attention_blocks) == len(self.num_res_blocks) | |
| assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
| print(f"Constructor of UNetModel received um_attention_blocks={num_attention_blocks}. " | |
| f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
| f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
| f"attention will still not be set.") | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.use_checkpoint = use_checkpoint | |
| self.dtype = th.float16 if use_fp16 else th.float32 | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| self.use_VAEdownsample = use_VAEdownsample | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ] | |
| ) | |
| self.cond_first_block = TimestepEmbedSequential( | |
| zero_module(conv_nd(dims, cond_first_ch, model_channels, 3, padding=1)) | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=mult * model_channels, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| if exists(disable_self_attentions): | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=use_checkpoint, | |
| num_heads=num_heads, | |
| num_head_channels=dim_head, | |
| use_new_attention_order=use_new_attention_order, | |
| ) if not use_spatial_transformer else SpatialTransformer( | |
| ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
| disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True, | |
| ) | |
| if resblock_updown | |
| else Downsample( | |
| ch, conv_resample, dims=dims, out_channels=out_ch | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| self.middle_block = TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=use_checkpoint, | |
| num_heads=num_heads, | |
| num_head_channels=dim_head, | |
| use_new_attention_order=use_new_attention_order, | |
| ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
| ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
| disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint | |
| ), | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| ) | |
| self._feature_size += ch | |
| def forward(self, x, hint, timesteps, context, only_mid_control=False, **kwargs): | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| if not self.use_VAEdownsample: | |
| guided_hint = self.input_hint_block(hint, emb, context) | |
| else: | |
| guided_hint = self.cond_first_block(hint, emb, context) | |
| outs = [] | |
| hs = [] | |
| h = x.type(self.dtype) | |
| for module in self.input_blocks: | |
| if guided_hint is not None: | |
| h = module(h, emb, context) | |
| h += guided_hint | |
| hs.append(h) | |
| guided_hint = None | |
| else: | |
| h = module(h, emb, context) | |
| hs.append(h) | |
| outs.append(h) | |
| h = self.middle_block(h, emb, context) | |
| outs.append(h) | |
| return outs, None |