Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from fpdf import FPDF
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import matplotlib.dates as mdates
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# --- PDF Generation Helper Function (Unchanged) ---
|
| 11 |
+
def create_pdf_report(text_content):
|
| 12 |
+
"""
|
| 13 |
+
Generates a PDF file from a given text string.
|
| 14 |
+
"""
|
| 15 |
+
try:
|
| 16 |
+
temp_dir = tempfile.gettempdir()
|
| 17 |
+
pdf_path = os.path.join(
|
| 18 |
+
temp_dir, next(tempfile._get_candidate_names()) + ".pdf"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
pdf = FPDF()
|
| 22 |
+
pdf.add_page()
|
| 23 |
+
|
| 24 |
+
pdf.set_font("Courier", size=10)
|
| 25 |
+
|
| 26 |
+
pdf.set_font("Courier", "B", 16)
|
| 27 |
+
pdf.cell(0, 10, "SaaS Metrics Analysis Report", 0, 1, "C")
|
| 28 |
+
pdf.ln(10)
|
| 29 |
+
|
| 30 |
+
pdf.set_font("Courier", size=10)
|
| 31 |
+
|
| 32 |
+
encoded_text = text_content.encode("latin-1", "replace").decode("latin-1")
|
| 33 |
+
pdf.multi_cell(0, 5, text=encoded_text)
|
| 34 |
+
|
| 35 |
+
pdf.output(pdf_path)
|
| 36 |
+
|
| 37 |
+
return pdf_path
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"Error creating PDF: {e}")
|
| 40 |
+
return None
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# --- Visualization Helper Function ---
|
| 44 |
+
def create_visualizations(df):
|
| 45 |
+
"""
|
| 46 |
+
Generates matplotlib plots from the dataframe.
|
| 47 |
+
"""
|
| 48 |
+
try:
|
| 49 |
+
# Ensure plots are closed to prevent memory issues in long-running apps
|
| 50 |
+
plt.close("all")
|
| 51 |
+
|
| 52 |
+
# --- Plot 1: MRR Trend ---
|
| 53 |
+
fig1, ax1 = plt.subplots(figsize=(10, 5))
|
| 54 |
+
ax1.plot(df["Date"], df["MRR_End"], marker="o", linestyle="-", color="#1E88E5")
|
| 55 |
+
ax1.set_title("Monthly Recurring Revenue (MRR) Trend", fontsize=14)
|
| 56 |
+
ax1.set_xlabel("Date", fontsize=12)
|
| 57 |
+
ax1.set_ylabel("MRR ($)", fontsize=12)
|
| 58 |
+
ax1.grid(True, which="both", linestyle="--", linewidth=0.5)
|
| 59 |
+
ax1.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
|
| 60 |
+
ax1.tick_params(axis="x", rotation=45)
|
| 61 |
+
fig1.tight_layout()
|
| 62 |
+
|
| 63 |
+
# --- Plot 2: Customer Growth ---
|
| 64 |
+
fig2, ax2 = plt.subplots(figsize=(10, 5))
|
| 65 |
+
ax2.plot(
|
| 66 |
+
df["Date"],
|
| 67 |
+
df["Total_Customers_End"],
|
| 68 |
+
marker="o",
|
| 69 |
+
linestyle="-",
|
| 70 |
+
color="#43A047",
|
| 71 |
+
)
|
| 72 |
+
ax2.set_title("Customer Growth Trend", fontsize=14)
|
| 73 |
+
ax2.set_xlabel("Date", fontsize=12)
|
| 74 |
+
ax2.set_ylabel("Total Customers", fontsize=12)
|
| 75 |
+
ax2.grid(True, which="both", linestyle="--", linewidth=0.5)
|
| 76 |
+
ax2.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
|
| 77 |
+
ax2.tick_params(axis="x", rotation=45)
|
| 78 |
+
fig2.tight_layout()
|
| 79 |
+
|
| 80 |
+
# --- Plot 3: LTV vs CAC (Last Month) ---
|
| 81 |
+
last_month = df.iloc[-1]
|
| 82 |
+
mrr_now = last_month["MRR_End"]
|
| 83 |
+
active_accounts = last_month["Total_Customers_End"]
|
| 84 |
+
arpa_monthly = calculate_arpa(mrr_now, active_accounts)
|
| 85 |
+
# customer_churn_rate_monthly = calculate_customer_churn_rate(
|
| 86 |
+
# last_month["Churned_Customers"], last_month["Total_Customers_Start"]
|
| 87 |
+
# )
|
| 88 |
+
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
|
| 89 |
+
last_month["Churned_Revenue"], last_month["MRR_Start"]
|
| 90 |
+
)
|
| 91 |
+
gross_margin_monthly = calculate_gross_margin(
|
| 92 |
+
last_month["Total_Revenue"], last_month["COGS"]
|
| 93 |
+
)
|
| 94 |
+
ltv = calculate_ltv(
|
| 95 |
+
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
|
| 96 |
+
)
|
| 97 |
+
cac_monthly = calculate_cac(
|
| 98 |
+
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
fig3, ax3 = plt.subplots(figsize=(8, 5))
|
| 102 |
+
metrics = ["LTV (Lifetime Value)", "CAC (Acquisition Cost)"]
|
| 103 |
+
values = [ltv, cac_monthly]
|
| 104 |
+
bars = ax3.bar(metrics, values, color=["#43A047", "#E53935"])
|
| 105 |
+
ax3.set_title(
|
| 106 |
+
f"LTV vs. CAC for {last_month['Date'].strftime('%Y-%m')}", fontsize=14
|
| 107 |
+
)
|
| 108 |
+
ax3.set_ylabel("Value ($)", fontsize=12)
|
| 109 |
+
# Add value labels on top of bars
|
| 110 |
+
for bar in bars:
|
| 111 |
+
yval = bar.get_height()
|
| 112 |
+
ax3.text(
|
| 113 |
+
bar.get_x() + bar.get_width() / 2.0,
|
| 114 |
+
yval,
|
| 115 |
+
f"${yval:,.0f}",
|
| 116 |
+
va="bottom",
|
| 117 |
+
ha="center",
|
| 118 |
+
)
|
| 119 |
+
fig3.tight_layout()
|
| 120 |
+
|
| 121 |
+
# --- Plot 4: Net Revenue Retention (NRR) Trend ---
|
| 122 |
+
# Calculate NRR for each row if it's not already there
|
| 123 |
+
df["NRR"] = df.apply(
|
| 124 |
+
lambda row: calculate_nrr(
|
| 125 |
+
row["MRR_Start"], row["Expansion_Revenue"], row["Churned_Revenue"]
|
| 126 |
+
),
|
| 127 |
+
axis=1,
|
| 128 |
+
)
|
| 129 |
+
fig4, ax4 = plt.subplots(figsize=(10, 5))
|
| 130 |
+
ax4.plot(df["Date"], df["NRR"], marker="o", linestyle="-", color="#8E24AA")
|
| 131 |
+
ax4.axhline(y=1.0, color="grey", linestyle="--", label="100% Benchmark")
|
| 132 |
+
ax4.set_title("Net Revenue Retention (NRR) Trend", fontsize=14)
|
| 133 |
+
ax4.set_xlabel("Date", fontsize=12)
|
| 134 |
+
ax4.set_ylabel("NRR", fontsize=12)
|
| 135 |
+
ax4.yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: f"{y:.0%}"))
|
| 136 |
+
ax4.grid(True, which="both", linestyle="--", linewidth=0.5)
|
| 137 |
+
ax4.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m"))
|
| 138 |
+
ax4.tick_params(axis="x", rotation=45)
|
| 139 |
+
ax4.legend()
|
| 140 |
+
fig4.tight_layout()
|
| 141 |
+
|
| 142 |
+
return fig1, fig2, fig3, fig4
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"Error creating visualizations: {e}")
|
| 145 |
+
return None, None, None, None
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# --- Core SaaS Metrics Functions (Unchanged) ---
|
| 149 |
+
def calculate_arr(mrr):
|
| 150 |
+
return mrr * 12
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def calculate_yoy_growth(current, prior):
|
| 154 |
+
return (current - prior) / prior if prior > 0 else 0
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def calculate_sde(revenue, cogs, op_ex, owner_comp):
|
| 158 |
+
return revenue - cogs - op_ex + owner_comp
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def calculate_valuation_revenue(arr, multiple):
|
| 162 |
+
return arr * multiple
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def calculate_valuation_sde(sde, multiple):
|
| 166 |
+
return sde * multiple
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def calculate_valuation_ebitda(ebitda, multiple):
|
| 170 |
+
return ebitda * multiple
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def calculate_rule_of_40(growth_percent, margin_percent):
|
| 174 |
+
return growth_percent + margin_percent
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def calculate_arpa(mrr, customers):
|
| 178 |
+
return mrr / customers if customers > 0 else 0
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def calculate_customer_churn_rate(churned, start):
|
| 182 |
+
return churned / start if start > 0 else 0
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def calculate_gross_revenue_churn_rate(churned_rev, mrr_start):
|
| 186 |
+
return churned_rev / mrr_start if mrr_start > 0 else 0
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def calculate_net_revenue_churn_rate(churned_rev, expansion_rev, mrr_start):
|
| 190 |
+
return (churned_rev - expansion_rev) / mrr_start if mrr_start > 0 else 0
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def calculate_nrr(mrr_start, expansion, churned):
|
| 194 |
+
return (mrr_start + expansion - churned) / mrr_start if mrr_start > 0 else 0
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def calculate_cac(sm_spend, new):
|
| 198 |
+
return sm_spend / new if new > 0 else 0
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def calculate_gross_margin(rev, cogs):
|
| 202 |
+
return (rev - cogs) / rev if rev > 0 else 0
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def calculate_customer_lifetime(churn_rate):
|
| 206 |
+
return 1 / churn_rate if churn_rate > 0 else 0
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def calculate_ltv(arpa, margin, rev_churn):
|
| 210 |
+
return arpa * margin / rev_churn if rev_churn > 0 else 0
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def calculate_ltv_cac_ratio(ltv, cac):
|
| 214 |
+
return ltv / cac if cac > 0 else 0
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def calculate_cac_payback_period(cac, arpa, margin):
|
| 218 |
+
return cac / (arpa * margin) if arpa * margin > 0 else 0
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# --- Modified Main Analysis Function ---
|
| 222 |
+
def analyze_csv(file, revenue_multiple=6.0, sde_multiple=4.0, ebitda_multiple=5.5):
|
| 223 |
+
"""
|
| 224 |
+
Analyzes the uploaded CSV and returns a text summary, a PDF, and plots.
|
| 225 |
+
"""
|
| 226 |
+
if file is None:
|
| 227 |
+
return "Please upload a CSV file.", None, None, None, None, None
|
| 228 |
+
|
| 229 |
+
try:
|
| 230 |
+
df = pd.read_csv(file)
|
| 231 |
+
df["Date"] = pd.to_datetime(df["Date"])
|
| 232 |
+
|
| 233 |
+
if len(df) < 13:
|
| 234 |
+
return (
|
| 235 |
+
"Insufficient data in CSV. Need at least 13 months for full analysis.",
|
| 236 |
+
None,
|
| 237 |
+
None,
|
| 238 |
+
None,
|
| 239 |
+
None,
|
| 240 |
+
None,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# --- Generate Visualizations ---
|
| 244 |
+
plot1, plot2, plot3, plot4 = create_visualizations(df)
|
| 245 |
+
|
| 246 |
+
# --- Set Analysis Period and Assumptions ---
|
| 247 |
+
last_month = df.iloc[-1]
|
| 248 |
+
last_12_months = df.iloc[-13:-1]
|
| 249 |
+
prior_12_months = df.iloc[:12] if len(df) >= 24 else df.iloc[:-13]
|
| 250 |
+
|
| 251 |
+
output = []
|
| 252 |
+
|
| 253 |
+
# --- Calculate Annual Metrics ---
|
| 254 |
+
output.append("=" * 50)
|
| 255 |
+
output.append(
|
| 256 |
+
f"ANALYSIS FOR LAST 12 MONTHS ({last_12_months['Date'].min().strftime('%Y-%m')} to {last_12_months['Date'].max().strftime('%Y-%m')})"
|
| 257 |
+
)
|
| 258 |
+
output.append("=" * 50)
|
| 259 |
+
|
| 260 |
+
total_revenue_last_12m = last_12_months["Total_Revenue"].sum()
|
| 261 |
+
total_cogs_last_12m = last_12_months["COGS"].sum()
|
| 262 |
+
total_opex_last_12m = last_12_months["OpEx"].sum()
|
| 263 |
+
total_owner_comp_last_12m = last_12_months["Owner_Compensation"].sum()
|
| 264 |
+
total_sm_spend_last_12m = last_12_months["Sales_And_Marketing_Spend"].sum()
|
| 265 |
+
|
| 266 |
+
mrr_end_of_year = last_12_months.iloc[-1]["MRR_End"]
|
| 267 |
+
arr_current = calculate_arr(mrr_end_of_year)
|
| 268 |
+
arr_prior = calculate_arr(prior_12_months.iloc[-1]["MRR_End"])
|
| 269 |
+
yoy_growth = calculate_yoy_growth(arr_current, arr_prior)
|
| 270 |
+
|
| 271 |
+
output.append(f"Annual Recurring Revenue (ARR): ${arr_current:,.2f}")
|
| 272 |
+
output.append(f"YoY ARR Growth: {yoy_growth:.2%}")
|
| 273 |
+
|
| 274 |
+
sde_annual = calculate_sde(
|
| 275 |
+
total_revenue_last_12m,
|
| 276 |
+
total_cogs_last_12m,
|
| 277 |
+
(total_opex_last_12m + total_sm_spend_last_12m),
|
| 278 |
+
total_owner_comp_last_12m,
|
| 279 |
+
)
|
| 280 |
+
ebitda_annual = (
|
| 281 |
+
total_revenue_last_12m
|
| 282 |
+
- total_cogs_last_12m
|
| 283 |
+
- total_opex_last_12m
|
| 284 |
+
- total_sm_spend_last_12m
|
| 285 |
+
- total_owner_comp_last_12m
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
output.append(f"Seller's Discretionary Earnings (SDE): ${sde_annual:,.2f}")
|
| 289 |
+
output.append(f"EBITDA: ${ebitda_annual:,.2f}")
|
| 290 |
+
|
| 291 |
+
output.append("\n--- Valuations ---")
|
| 292 |
+
output.append(
|
| 293 |
+
f"Revenue-Based Valuation ({revenue_multiple:.1f}x ARR): ${calculate_valuation_revenue(arr_current, revenue_multiple):,.2f}"
|
| 294 |
+
)
|
| 295 |
+
output.append(
|
| 296 |
+
f"SDE-Based Valuation ({sde_multiple:.1f}x SDE): ${calculate_valuation_sde(sde_annual, sde_multiple):,.2f}"
|
| 297 |
+
)
|
| 298 |
+
output.append(
|
| 299 |
+
f"EBITDA-Based Valuation ({ebitda_multiple:.1f}x EBITDA): ${calculate_valuation_ebitda(ebitda_annual, ebitda_multiple):,.2f}"
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
ebitda_margin_annual = (
|
| 303 |
+
ebitda_annual / total_revenue_last_12m if total_revenue_last_12m > 0 else 0
|
| 304 |
+
)
|
| 305 |
+
rule_of_40_score = calculate_rule_of_40(
|
| 306 |
+
yoy_growth * 100, ebitda_margin_annual * 100
|
| 307 |
+
)
|
| 308 |
+
output.append("\n--- Health Metrics ---")
|
| 309 |
+
output.append(f"EBITDA Margin: {ebitda_margin_annual:.2%}")
|
| 310 |
+
output.append(
|
| 311 |
+
f"Rule of 40 Score: {rule_of_40_score:.2f} (Target > 40 is healthy)"
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# --- Calculate Monthly Metrics ---
|
| 315 |
+
output.append("\n" + "=" * 50)
|
| 316 |
+
output.append(
|
| 317 |
+
f"ANALYSIS FOR LATEST MONTH ({last_month['Date'].strftime('%Y-%m')})"
|
| 318 |
+
)
|
| 319 |
+
output.append("=" * 50)
|
| 320 |
+
|
| 321 |
+
mrr_now = last_month["MRR_End"]
|
| 322 |
+
arpa_monthly = calculate_arpa(mrr_now, last_month["Total_Customers_End"])
|
| 323 |
+
customer_churn_rate_monthly = calculate_customer_churn_rate(
|
| 324 |
+
last_month["Churned_Customers"], last_month["Total_Customers_Start"]
|
| 325 |
+
)
|
| 326 |
+
gross_rev_churn_rate_monthly = calculate_gross_revenue_churn_rate(
|
| 327 |
+
last_month["Churned_Revenue"], last_month["MRR_Start"]
|
| 328 |
+
)
|
| 329 |
+
net_rev_churn_rate_monthly = calculate_net_revenue_churn_rate(
|
| 330 |
+
last_month["Churned_Revenue"],
|
| 331 |
+
last_month["Expansion_Revenue"],
|
| 332 |
+
last_month["MRR_Start"],
|
| 333 |
+
)
|
| 334 |
+
nrr_monthly = calculate_nrr(
|
| 335 |
+
last_month["MRR_Start"],
|
| 336 |
+
last_month["Expansion_Revenue"],
|
| 337 |
+
last_month["Churned_Revenue"],
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
output.append("--- Revenue & Churn ---")
|
| 341 |
+
output.append(f"Average Revenue Per Account (ARPA): ${arpa_monthly:,.2f}")
|
| 342 |
+
output.append(f"Customer Churn Rate: {customer_churn_rate_monthly:.2%}")
|
| 343 |
+
output.append(f"Gross Revenue Churn Rate: {gross_rev_churn_rate_monthly:.2%}")
|
| 344 |
+
output.append(f"Net Revenue Churn Rate: {net_rev_churn_rate_monthly:.2%}")
|
| 345 |
+
output.append(f"Net Revenue Retention (NRR): {nrr_monthly:.2%}")
|
| 346 |
+
|
| 347 |
+
cac_monthly = calculate_cac(
|
| 348 |
+
last_month["Sales_And_Marketing_Spend"], last_month["New_Customers"]
|
| 349 |
+
)
|
| 350 |
+
gross_margin_monthly = calculate_gross_margin(
|
| 351 |
+
last_month["Total_Revenue"], last_month["COGS"]
|
| 352 |
+
)
|
| 353 |
+
customer_lifetime_months = calculate_customer_lifetime(
|
| 354 |
+
customer_churn_rate_monthly
|
| 355 |
+
)
|
| 356 |
+
ltv = calculate_ltv(
|
| 357 |
+
arpa_monthly, gross_margin_monthly, gross_rev_churn_rate_monthly
|
| 358 |
+
)
|
| 359 |
+
ltv_cac_ratio = calculate_ltv_cac_ratio(ltv, cac_monthly)
|
| 360 |
+
payback_period_months = calculate_cac_payback_period(
|
| 361 |
+
cac_monthly, arpa_monthly, gross_margin_monthly
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
output.append("\n--- Unit Economics ---")
|
| 365 |
+
output.append(f"Gross Margin: {gross_margin_monthly:.2%}")
|
| 366 |
+
output.append(f"Customer Acquisition Cost (CAC): ${cac_monthly:,.2f}")
|
| 367 |
+
output.append(f"Customer Lifetime: {customer_lifetime_months:.1f} months")
|
| 368 |
+
output.append(f"Customer Lifetime Value (LTV): ${ltv:,.2f}")
|
| 369 |
+
output.append(f"LTV:CAC Ratio: {ltv_cac_ratio:.2f}:1 (Target > 3:1 is healthy)")
|
| 370 |
+
output.append(
|
| 371 |
+
f"CAC Payback Period: {payback_period_months:.1f} months (Target < 12 is healthy)"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
analysis_text = "\n".join(output)
|
| 375 |
+
pdf_file_path = create_pdf_report(analysis_text)
|
| 376 |
+
|
| 377 |
+
return analysis_text, pdf_file_path, plot1, plot2, plot3, plot4
|
| 378 |
+
|
| 379 |
+
except Exception as e:
|
| 380 |
+
return f"Error processing file: {str(e)}", None, None, None, None, None
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
# --- Updated Gradio Interface ---
|
| 384 |
+
demo = gr.Interface(
|
| 385 |
+
fn=analyze_csv,
|
| 386 |
+
inputs=[
|
| 387 |
+
gr.File(label="Upload SaaS Metrics CSV File", file_types=[".csv"]),
|
| 388 |
+
gr.Number(label="Revenue Multiple", value=6.0),
|
| 389 |
+
gr.Number(label="SDE Multiple", value=4.0),
|
| 390 |
+
gr.Number(label="EBITDA Multiple", value=5.5),
|
| 391 |
+
],
|
| 392 |
+
outputs=[
|
| 393 |
+
gr.Textbox(label="Analysis Results", lines=20),
|
| 394 |
+
gr.File(label="Download PDF Report"),
|
| 395 |
+
gr.Plot(label="MRR Trend"),
|
| 396 |
+
gr.Plot(label="Customer Growth Trend"),
|
| 397 |
+
gr.Plot(label="LTV vs. CAC (Last Month)"),
|
| 398 |
+
gr.Plot(label="Net Revenue Retention (NRR) Trend"),
|
| 399 |
+
],
|
| 400 |
+
title="SaaS Metrics Analyzer with Visualizations",
|
| 401 |
+
description="Upload a CSV file with SaaS metrics data. The app will analyze the last 12 months, the latest month, generate key visualizations, and produce a downloadable PDF report.",
|
| 402 |
+
allow_flagging="never",
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
if __name__ == "__main__":
|
| 406 |
+
demo.launch()
|