File size: 17,461 Bytes
1c9b3d5
 
 
a69a1a4
 
1c9b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9819472
 
a69a1a4
 
9819472
a69a1a4
 
 
 
1c9b3d5
a69a1a4
 
 
 
 
1c9b3d5
a69a1a4
 
 
 
 
1c9b3d5
a69a1a4
 
1c9b3d5
a69a1a4
 
 
 
1c9b3d5
a69a1a4
 
1c9b3d5
a69a1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966e5cc
 
 
 
 
 
1c9b3d5
966e5cc
1c9b3d5
 
 
966e5cc
 
 
1c9b3d5
 
 
 
966e5cc
 
1c9b3d5
 
 
966e5cc
1c9b3d5
 
 
966e5cc
1c9b3d5
 
 
 
966e5cc
1c9b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966e5cc
1c9b3d5
 
 
966e5cc
 
1c9b3d5
 
 
 
966e5cc
1c9b3d5
 
 
966e5cc
1c9b3d5
 
 
966e5cc
1c9b3d5
 
 
966e5cc
1c9b3d5
 
966e5cc
1c9b3d5
 
 
 
966e5cc
1c9b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os, re, io, time, math, textwrap, warnings, requests
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use("Agg")   # 👈 headless backend for HF Spaces
import matplotlib.pyplot as plt

import gradio as gr

import torch
from transformers import AutoTokenizer, AutoModel
from sklearn.cluster import KMeans
from sklearn.linear_model import LogisticRegression
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import mean_squared_error, r2_score, roc_auc_score, average_precision_score
from sklearn.metrics.pairwise import cosine_similarity
from xgboost import XGBRegressor

warnings.filterwarnings("ignore")

# -----------------------------
# Config
# -----------------------------
DATA_CANDIDATES = [
    os.getenv("TEM1_DATA_PATH", "tem1_clean.csv"),
    "data/tem1_clean.csv",
    "/data/tem1_clean.csv",
]
UNIPROT_ID = "P62593"  # TEM-1 beta-lactamase
PAFF_BINDER_THRESHOLD = 6.0  # >=6 ~ <=1µM

# -----------------------------
# Small helpers
# -----------------------------
def pAff_to_nM(p):
    # p = -log10(Kd M)  ->  Kd (nM) = 10**(9-p)
    return 10.0 ** (9.0 - float(p))

def fmt_conc(nM):
    if nM < 1e-3:  return f"{nM*1e3:.2f} pM"
    if nM < 1:     return f"{nM:.2f} nM"
    if nM < 1e3:   return f"{nM/1e3:.2f} µM"
    return f"{nM/1e6:.2f} mM"

def conf_label(p):
    if p >= 0.80: return "Likely"
    if p >= 0.60: return "Uncertain"
    return "Unlikely"

def conf_emoji(p):
    if p >= 0.80: return "🟢"
    if p >= 0.60: return "🟡"
    return "🔴"

def _parse_smiles_block(text, limit=100):
    items = [s.strip() for s in re.split(r'[\n,;]+', str(text or "")) if s.strip()]
    return items[:limit]

# -----------------------------
# Load TEM-1 protein and embed
# -----------------------------
print("[boot] Fetching TEM-1 (UniProt %s)" % UNIPROT_ID)
fasta = requests.get(f"https://rest.uniprot.org/uniprotkb/{UNIPROT_ID}.fasta").text
TEM1_SEQ = "".join(line.strip() for line in fasta.splitlines() if not line.startswith(">"))
TEM1_SEQ = re.sub(r"[^ACDEFGHIKLMNPQRSTVWY]", "", TEM1_SEQ.upper())
print("[boot] TEM-1 length:", len(TEM1_SEQ))

device = "cuda" if torch.cuda.is_available() else "cpu"
print("[boot] Using device:", device)

print("[boot] Loading ESM-2 35M ...")
tok_p = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
mdl_p = AutoModel.from_pretrained("facebook/esm2_t12_35M_UR50D").to(device).eval()

print("[boot] Loading ChemBERTa ...")
tok_l = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
mdl_l = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(device).eval()

with torch.inference_mode():
    toks = tok_p(TEM1_SEQ, return_tensors="pt", add_special_tokens=True).to(device)
    rep = mdl_p(**toks).last_hidden_state[0, 1:-1, :].mean(dim=0).cpu().numpy()
prot_vec = rep.astype(np.float32)  # ~480-D
print("[boot] Protein embedding:", prot_vec.shape)

def _embed_ligands(smiles_list, batch_size=64, max_length=256):
    vecs = []
    for i in range(0, len(smiles_list), batch_size):
        batch = smiles_list[i:i+batch_size]
        enc = tok_l(batch, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to(device)
        with torch.inference_mode():
            out = mdl_l(**enc).last_hidden_state
            cls = out[:, 0, :].detach().cpu().numpy().astype(np.float32)
        vecs.append(cls)
    return np.vstack(vecs) if vecs else np.zeros((0, mdl_l.config.hidden_size), dtype=np.float32)

# -----------------------------
# Try to load training data
# -----------------------------
df = None
for p in DATA_CANDIDATES:
    if os.path.exists(p):
        try:
            df = pd.read_csv(p)
            if {'smiles','pAff'}.issubset(df.columns):
                print(f"[boot] Loaded dataset: {p} -> {df.shape}")
                break
        except Exception as e:
            print("[boot] Failed reading", p, e)

have_data = df is not None

# Placeholders initialized below
reg = None
clf = None
clf_cal = None
bins = None
q90_table = None
lig_tr = None
metrics_md = "*(Train a model or upload tem1_clean.csv to populate metrics here.)*"

def _train_models_from_df(df):
    global reg, clf, clf_cal, bins, q90_table, lig_tr, metrics_md

    df = df.dropna(subset=["smiles","pAff"]).reset_index(drop=True)

    # Ligand embeddings
    t0 = time.time()
    lig_X = _embed_ligands(df["smiles"].tolist())
    print(f"[train] Ligand embed {lig_X.shape} in {time.time()-t0:.1f}s")

    # Joint features with protein
    prot_X = np.repeat(prot_vec.reshape(1, -1), len(df), axis=0)
    X = np.hstack([prot_X, lig_X]).astype(np.float32)

    # Targets
    y = df["pAff"].astype(np.float32).values
    y_bin = (y >= PAFF_BINDER_THRESHOLD).astype(int)

    # Group-wise split by k-means clusters (scaffold-free)
    k = max(5, min(50, len(df)//50))
    km = KMeans(n_clusters=k, random_state=7, n_init=10)
    groups = km.fit_predict(lig_X)

    # custom split that holds out whole clusters
    def groupwise_split(groups, test_frac=0.2, seed=7):
        rng = np.random.default_rng(seed)
        keys = list(set(groups))
        rng.shuffle(keys)
        N = len(groups)
        target = int(N*test_frac)
        taken, test_idx = 0, []
        for key in keys:
            idx = np.where(groups==key)[0].tolist()
            test_idx.extend(idx)
            taken += len(idx)
            if taken >= target:
                break
        train_idx = sorted(set(range(N)) - set(test_idx))
        return np.array(train_idx), np.array(test_idx)

    tr_idx, te_idx = groupwise_split(groups, test_frac=0.2, seed=7)
    X_tr, X_te = X[tr_idx], X[te_idx]
    y_tr, y_te = y[tr_idx], y[te_idx]
    yb_tr, yb_te = y_bin[tr_idx], y_bin[te_idx]

    # Heads
    reg = XGBRegressor(
        n_estimators=600, max_depth=6, learning_rate=0.05,
        subsample=0.8, colsample_bytree=0.8, n_jobs=-1
    ).fit(X_tr, y_tr)

    clf = LogisticRegression(max_iter=2000).fit(X_tr, yb_tr)

    # Metrics
    pred = reg.predict(X_te)
    try:
        rmse = mean_squared_error(y_te, pred, squared=False)
    except TypeError:
        rmse = mean_squared_error(y_te, pred) ** 0.5
    r2 = r2_score(y_te, pred)
    p_bin = clf.predict_proba(X_te)[:, 1]
    roc = roc_auc_score(yb_te, p_bin)
    pr  = average_precision_score(yb_te, p_bin)

    # conditional q90 by predicted bin
    bins = np.linspace(float(pred.min()), float(pred.max()), 8)
    bin_idx = np.digitize(pred, bins)
    abs_err = np.abs(y_te - pred)
    q90_table = np.zeros(len(bins)+1, dtype=np.float32)
    for i in range(len(q90_table)):
        vals = abs_err[bin_idx==i]
        q90_table[i] = np.quantile(vals, 0.90) if len(vals)>0 else float(np.quantile(abs_err, 0.90))

    # calibration & similarity
    clf_cal = CalibratedClassifierCV(clf, method="isotonic", cv=3).fit(X_tr, yb_tr)
    lig_tr = lig_X[tr_idx]

    metrics_md = (
        f"**Eval (held-out)** — RMSE: {rmse:.2f} pAff (≈×{10**rmse:.1f}), "
        f"R²: {r2:.2f}, ROC-AUC: {roc:.2f}, PR-AUC: {pr:.2f}"
    )
    print("[train] done.")

def q90_for(p):
    i = int(np.digitize([p], bins)[0]) if bins is not None else 0
    i = max(0, min(i, len(q90_table)-1)) if q90_table is not None else 0
    return q90_table[i] if q90_table is not None else 0.75  # conservative fallback

# Try real training; otherwise install heuristic heads
if have_data:
    _train_models_from_df(df)
else:
    print("[boot] No dataset found — using heuristic heads (demo mode).")

    class HeuristicReg:
        def predict(self, X):
            # X: [B, Dp+Dl]; take ligand part and compute cosine to protein-projected vector
            Dp = prot_vec.shape[0]
            lig = X[:, Dp:]
            # project protein to ligand dims
            pv = prot_vec[:lig.shape[1]]
            pv = pv / (np.linalg.norm(pv) + 1e-8)
            lig_n = lig / (np.linalg.norm(lig, axis=1, keepdims=True)+1e-8)
            sim = (lig_n @ pv)
            return 5.5 + 2.0*(sim.clip(-1,1)+1)/2.0  # ~ [4.5,7.5]

    class HeuristicClf:
        def predict_proba(self, X):
            Dp = prot_vec.shape[0]
            lig = X[:, Dp:]
            pv = prot_vec[:lig.shape[1]]
            pv = pv / (np.linalg.norm(pv) + 1e-8)
            lig_n = lig / (np.linalg.norm(lig, axis=1, keepdims=True)+1e-8)
            sim = (lig_n @ pv)
            z = (sim - sim.min()) / (sim.max()-sim.min()+1e-8)
            p = 1/(1+np.exp(-4*(z-0.5)))
            return np.vstack([1-p, p]).T

    reg = HeuristicReg()
    clf = HeuristicClf()
    clf_cal = clf
    bins = np.linspace(4.0, 8.0, 8)
    q90_table = np.full(len(bins)+1, 0.75, dtype=np.float32)
    lig_tr = np.zeros((1, mdl_l.config.hidden_size), dtype=np.float32)
    metrics_md = "*(Demo mode — upload tem1_clean.csv to train real heads.)*"

# -----------------------------
# Prediction helpers
# -----------------------------
def train_similarity(smiles):
    enc = tok_l([smiles], padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)
    with torch.inference_mode():
        lig = mdl_l(**enc).last_hidden_state[:,0,:].cpu().numpy().astype(np.float32)
    if lig_tr is None or lig_tr.shape[0]==0:
        return 0.0
    sim = cosine_similarity(lig, lig_tr)[0]
    return float(sim.max())

import matplotlib.pyplot as plt  # (already imported at top, fine to keep)

import traceback
import matplotlib.pyplot as plt  # keep after matplotlib.use("Agg")

def _blank_fig(width=3.6, height=0.6):
    fig = plt.figure(figsize=(width, height))
    plt.axis("off")
    return fig

def predict_smiles(smiles: str):
    try:
        # Empty input → friendly message + blank fig
        if not smiles:
            return "Please enter a SMILES", _blank_fig()

        # 1) ligand embedding
        enc = tok_l([smiles], padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)
        with torch.inference_mode():
            out = mdl_l(**enc).last_hidden_state
            lig = out[:, 0, :].detach().cpu().numpy().astype(np.float32)

        # 2) joint feature
        fx = np.hstack([prot_vec.reshape(1, -1), lig]).astype(np.float32)

        # 3) regression + interval
        p_aff = float(reg.predict(fx)[0])
        q90   = q90_for(p_aff)
        p_lo, p_hi = p_aff - q90, p_aff + q90

        nM_center = pAff_to_nM(p_aff)
        nM_hi, nM_lo = pAff_to_nM(p_hi), pAff_to_nM(p_lo)

        # 4) calibrated binder probability
        try:
            p_cal = float(clf_cal.predict_proba(fx)[:, 1])
        except Exception:
            p_cal = float(clf.predict_proba(fx)[:, 1])
        label = conf_label(p_cal); mark = conf_emoji(p_cal)
        badge = " (≤1 µM)" if p_aff >= PAFF_BINDER_THRESHOLD else ""

        # 5) similarity
        sim = train_similarity(smiles)
        sim_note = (f"\nNearest-set similarity: {sim:.2f}"
                    if sim >= 0.60 else
                    f"\n⚠️ Low similarity to training set: {sim:.2f}")

        md = (
            f"**Predicted pAff:** {p_aff:.2f} (−log10 M){badge}  → **Kd ≈ {fmt_conc(nM_center)}**\n\n"
            f"**90% interval:** {p_lo:.2f}{p_hi:.2f}  (≈ {fmt_conc(nM_hi)} to {fmt_conc(nM_lo)})\n\n"
            f"**Binder confidence:** {mark} {label} ({p_cal:.2f}){sim_note}\n"
        )

        # Mini bar to visualize P(binder)
        fig = plt.figure(figsize=(3.6, 0.6))
        ax = fig.add_axes([0.07, 0.35, 0.86, 0.35])
        ax.barh([0], [p_cal], height=0.6)
        ax.set_xlim(0, 1)
        ax.set_yticks([])
        ax.set_xticks([0, 0.5, 1.0])
        ax.set_title("P(binder)")
        for spine in ax.spines.values():
            spine.set_visible(False)

        return md, fig

    except Exception as e:
        # Show the error inline so we can debug without checking logs
        tb = traceback.format_exc(limit=5)
        msg = f"❌ **Error:** {e}\n\n```\n{tb}\n```"
        return msg, _blank_fig()

def batch_predict(smiles_text):
    smi = _parse_smiles_block(smiles_text)
    if not smi:
        return [], np.array([]), np.array([])
    lig = _embed_ligands(smi)                              # (L, Dl)
    P   = np.repeat(prot_vec.reshape(1, -1), len(smi), 0)  # (L, Dp)
    X   = np.hstack([P, lig]).astype(np.float32)           # (L, Dp+Dl)
    p_aff  = reg.predict(X)
    p_bind = clf.predict_proba(X)[:, 1]
    return smi, p_aff, p_bind

def plot_paff_bars(names, paff, paff_thr=PAFF_BINDER_THRESHOLD):
    names = list(names); paff = np.array(paff, dtype=float)
    fig, ax = plt.subplots(figsize=(max(6, len(names)*0.6), 3.2))
    ax.bar(range(len(names)), paff)
    ax.axhline(paff_thr, linestyle="--")
    ax.set_xticks(range(len(names)))
    ax.set_xticklabels([n[:16]+("…" if len(n)>16 else "") for n in names], rotation=45, ha="right")
    ax.set_ylabel("Predicted pAff (−log10 M)"); ax.set_title("Batch predictions — pAff")
    plt.tight_layout()
    return fig

def plot_paff_vs_pbind(names, paff, pbind, hi=0.80, mid=0.60, paff_thr=PAFF_BINDER_THRESHOLD):
    names = list(names); paff = np.array(paff, dtype=float); pbind = np.array(pbind, dtype=float)
    fig, ax = plt.subplots(figsize=(5.8, 4.2))
    ax.scatter(paff, pbind, s=36)
    ax.axvline(paff_thr, linestyle="--"); ax.axhline(hi, linestyle="--"); ax.axhline(mid, linestyle="--")
    top = np.argsort(-(paff + pbind))[:10]
    for i in top:
        lbl = names[i][:18] + ("…" if len(names[i]) > 18 else "")
        ax.annotate(lbl, (paff[i], pbind[i]), xytext=(4, 4), textcoords="offset points")
    ax.set_xlabel("Predicted pAff (−log10 M)"); ax.set_ylabel("Calibrated P(binder)")
    ax.set_title("Batch predictions"); plt.tight_layout()
    return fig

def heatmap_predict(smiles_block):
    smi_list = _parse_smiles_block(smiles_block)
    if not smi_list:
        fig = plt.figure(figsize=(4, 2))
        plt.axis("off")
        plt.text(0.5, 0.5, "No SMILES provided", ha="center", va="center")
        return fig

    # Embed ligands
    ligs = _embed_ligands(smi_list)
    # Joint features (protein + ligands)
    pv_rep = np.repeat(prot_vec.reshape(1, -1), len(smi_list), axis=0)
    fx = np.hstack([pv_rep, ligs]).astype(np.float32)

    # Predict pAff (single protein row)
    p_affs = reg.predict(fx)  # shape (L,)
    M = p_affs.reshape(1, -1)  # 1 x L

    fig, ax = plt.subplots(figsize=(max(6, len(smi_list)*0.8), 2.8))
    im = ax.imshow(M, aspect="auto")
    ax.set_xticks(range(len(smi_list)))
    ax.set_xticklabels([s[:14] + ("…" if len(s) > 14 else "") for s in smi_list],
                       rotation=45, ha="right")
    ax.set_yticks([0]); ax.set_yticklabels(["TEM-1 (WT)"])
    cbar = fig.colorbar(im, ax=ax); cbar.set_label("Predicted pAff")

    # Mark predicted binders (>= threshold)
    for j in range(M.shape[1]):
        if M[0, j] >= PAFF_BINDER_THRESHOLD:
            ax.text(j, 0, "★", ha="center", va="center", color="white", fontsize=12)

    ax.set_title("Heatmap — predicted pAff (higher is better)")
    plt.tight_layout()
    return fig


# -----------------------------
# Gradio UI
# -----------------------------
with gr.Blocks(title="Antibiotic Resistance Target Finder — TEM-1") as demo:
    gr.Markdown("""\
# Antibiotic Resistance Target Finder — TEM-1
**Goal:** Predict how tightly a small molecule binds **TEM-1 β-lactamase** variants.

**How to use (2 steps):**
1) Paste a **SMILES** string and click **Submit** to get a prediction.
2) (Optional) Paste multiple SMILES for batch plots and a heatmap.

*Protein embeddings:* ESM-2 (35M) · *Ligand embeddings:* ChemBERTa · *Models:* XGBoost + LogisticRegression
""")

    with gr.Row():
        smi_in = gr.Textbox(label="SMILES", placeholder="e.g., CC1=CC(=O)C=CC1=O", lines=1)
        btn = gr.Button("Submit", variant="primary")

    out_md = gr.Markdown()
    out_plot = gr.Plot()

    btn.click(fn=predict_smiles, inputs=smi_in, outputs=[out_md, out_plot])

    gr.Markdown("""---
### Batch mode (paste 1–100 SMILES separated by newlines, commas, or semicolons)
""")

    smi_batch = gr.Textbox(label="Batch SMILES", lines=6, placeholder="SMILES per line ...")
    
    with gr.Row():
        btn_bars = gr.Button("Bar chart (pAff)")
        btn_scatter = gr.Button("Scatter (pAff vs P(binder))")
        btn_heat = gr.Button("Heatmap")
    
    plot1 = gr.Plot()
    plot2 = gr.Plot()
    plot3 = gr.Plot()
    
    def _bars(smiblock):
        names, paff, pbind = batch_predict(smiblock)
        return plot_paff_bars(names, paff)
    
    def _scatter(smiblock):
        names, paff, pbind = batch_predict(smiblock)
        return plot_paff_vs_pbind(names, paff, pbind)
    
    def _heat(smiblock):
        return heatmap_predict(smiblock)
    
    btn_bars.click(_bars, inputs=smi_batch, outputs=plot1)
    btn_scatter.click(_scatter, inputs=smi_batch, outputs=plot2)
    btn_heat.click(_heat, inputs=smi_batch, outputs=plot3)


    with gr.Accordion("Model card: assumptions, metrics & limits", open=False):
        gr.Markdown("""\
**Compute footprint:** small (≤50M embeddings + lightweight heads). Runs on CPU in Spaces.  
%s

**Assumptions / caveats**
- Trained on **TEM-1** datasets; predictions for very dissimilar chemotypes are less certain.
- Reported “confidence” is **calibrated** on a held-out set; not a substitute for wet-lab validation.
- Use as a **ranking/triage** tool, not as a definitive activity claim.

**pAff** is −log10(Kd in molar). Bigger is better. Example: 1 µM → pAff=6; 100 nM → 7; 10 nM → 8.
""" % metrics_md)

demo.launch()