Spaces:
Sleeping
Sleeping
File size: 17,461 Bytes
1c9b3d5 a69a1a4 1c9b3d5 9819472 a69a1a4 9819472 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 a69a1a4 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 966e5cc 1c9b3d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import os, re, io, time, math, textwrap, warnings, requests
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use("Agg") # 👈 headless backend for HF Spaces
import matplotlib.pyplot as plt
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel
from sklearn.cluster import KMeans
from sklearn.linear_model import LogisticRegression
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import mean_squared_error, r2_score, roc_auc_score, average_precision_score
from sklearn.metrics.pairwise import cosine_similarity
from xgboost import XGBRegressor
warnings.filterwarnings("ignore")
# -----------------------------
# Config
# -----------------------------
DATA_CANDIDATES = [
os.getenv("TEM1_DATA_PATH", "tem1_clean.csv"),
"data/tem1_clean.csv",
"/data/tem1_clean.csv",
]
UNIPROT_ID = "P62593" # TEM-1 beta-lactamase
PAFF_BINDER_THRESHOLD = 6.0 # >=6 ~ <=1µM
# -----------------------------
# Small helpers
# -----------------------------
def pAff_to_nM(p):
# p = -log10(Kd M) -> Kd (nM) = 10**(9-p)
return 10.0 ** (9.0 - float(p))
def fmt_conc(nM):
if nM < 1e-3: return f"{nM*1e3:.2f} pM"
if nM < 1: return f"{nM:.2f} nM"
if nM < 1e3: return f"{nM/1e3:.2f} µM"
return f"{nM/1e6:.2f} mM"
def conf_label(p):
if p >= 0.80: return "Likely"
if p >= 0.60: return "Uncertain"
return "Unlikely"
def conf_emoji(p):
if p >= 0.80: return "🟢"
if p >= 0.60: return "🟡"
return "🔴"
def _parse_smiles_block(text, limit=100):
items = [s.strip() for s in re.split(r'[\n,;]+', str(text or "")) if s.strip()]
return items[:limit]
# -----------------------------
# Load TEM-1 protein and embed
# -----------------------------
print("[boot] Fetching TEM-1 (UniProt %s)" % UNIPROT_ID)
fasta = requests.get(f"https://rest.uniprot.org/uniprotkb/{UNIPROT_ID}.fasta").text
TEM1_SEQ = "".join(line.strip() for line in fasta.splitlines() if not line.startswith(">"))
TEM1_SEQ = re.sub(r"[^ACDEFGHIKLMNPQRSTVWY]", "", TEM1_SEQ.upper())
print("[boot] TEM-1 length:", len(TEM1_SEQ))
device = "cuda" if torch.cuda.is_available() else "cpu"
print("[boot] Using device:", device)
print("[boot] Loading ESM-2 35M ...")
tok_p = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
mdl_p = AutoModel.from_pretrained("facebook/esm2_t12_35M_UR50D").to(device).eval()
print("[boot] Loading ChemBERTa ...")
tok_l = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
mdl_l = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(device).eval()
with torch.inference_mode():
toks = tok_p(TEM1_SEQ, return_tensors="pt", add_special_tokens=True).to(device)
rep = mdl_p(**toks).last_hidden_state[0, 1:-1, :].mean(dim=0).cpu().numpy()
prot_vec = rep.astype(np.float32) # ~480-D
print("[boot] Protein embedding:", prot_vec.shape)
def _embed_ligands(smiles_list, batch_size=64, max_length=256):
vecs = []
for i in range(0, len(smiles_list), batch_size):
batch = smiles_list[i:i+batch_size]
enc = tok_l(batch, padding=True, truncation=True, max_length=max_length, return_tensors="pt").to(device)
with torch.inference_mode():
out = mdl_l(**enc).last_hidden_state
cls = out[:, 0, :].detach().cpu().numpy().astype(np.float32)
vecs.append(cls)
return np.vstack(vecs) if vecs else np.zeros((0, mdl_l.config.hidden_size), dtype=np.float32)
# -----------------------------
# Try to load training data
# -----------------------------
df = None
for p in DATA_CANDIDATES:
if os.path.exists(p):
try:
df = pd.read_csv(p)
if {'smiles','pAff'}.issubset(df.columns):
print(f"[boot] Loaded dataset: {p} -> {df.shape}")
break
except Exception as e:
print("[boot] Failed reading", p, e)
have_data = df is not None
# Placeholders initialized below
reg = None
clf = None
clf_cal = None
bins = None
q90_table = None
lig_tr = None
metrics_md = "*(Train a model or upload tem1_clean.csv to populate metrics here.)*"
def _train_models_from_df(df):
global reg, clf, clf_cal, bins, q90_table, lig_tr, metrics_md
df = df.dropna(subset=["smiles","pAff"]).reset_index(drop=True)
# Ligand embeddings
t0 = time.time()
lig_X = _embed_ligands(df["smiles"].tolist())
print(f"[train] Ligand embed {lig_X.shape} in {time.time()-t0:.1f}s")
# Joint features with protein
prot_X = np.repeat(prot_vec.reshape(1, -1), len(df), axis=0)
X = np.hstack([prot_X, lig_X]).astype(np.float32)
# Targets
y = df["pAff"].astype(np.float32).values
y_bin = (y >= PAFF_BINDER_THRESHOLD).astype(int)
# Group-wise split by k-means clusters (scaffold-free)
k = max(5, min(50, len(df)//50))
km = KMeans(n_clusters=k, random_state=7, n_init=10)
groups = km.fit_predict(lig_X)
# custom split that holds out whole clusters
def groupwise_split(groups, test_frac=0.2, seed=7):
rng = np.random.default_rng(seed)
keys = list(set(groups))
rng.shuffle(keys)
N = len(groups)
target = int(N*test_frac)
taken, test_idx = 0, []
for key in keys:
idx = np.where(groups==key)[0].tolist()
test_idx.extend(idx)
taken += len(idx)
if taken >= target:
break
train_idx = sorted(set(range(N)) - set(test_idx))
return np.array(train_idx), np.array(test_idx)
tr_idx, te_idx = groupwise_split(groups, test_frac=0.2, seed=7)
X_tr, X_te = X[tr_idx], X[te_idx]
y_tr, y_te = y[tr_idx], y[te_idx]
yb_tr, yb_te = y_bin[tr_idx], y_bin[te_idx]
# Heads
reg = XGBRegressor(
n_estimators=600, max_depth=6, learning_rate=0.05,
subsample=0.8, colsample_bytree=0.8, n_jobs=-1
).fit(X_tr, y_tr)
clf = LogisticRegression(max_iter=2000).fit(X_tr, yb_tr)
# Metrics
pred = reg.predict(X_te)
try:
rmse = mean_squared_error(y_te, pred, squared=False)
except TypeError:
rmse = mean_squared_error(y_te, pred) ** 0.5
r2 = r2_score(y_te, pred)
p_bin = clf.predict_proba(X_te)[:, 1]
roc = roc_auc_score(yb_te, p_bin)
pr = average_precision_score(yb_te, p_bin)
# conditional q90 by predicted bin
bins = np.linspace(float(pred.min()), float(pred.max()), 8)
bin_idx = np.digitize(pred, bins)
abs_err = np.abs(y_te - pred)
q90_table = np.zeros(len(bins)+1, dtype=np.float32)
for i in range(len(q90_table)):
vals = abs_err[bin_idx==i]
q90_table[i] = np.quantile(vals, 0.90) if len(vals)>0 else float(np.quantile(abs_err, 0.90))
# calibration & similarity
clf_cal = CalibratedClassifierCV(clf, method="isotonic", cv=3).fit(X_tr, yb_tr)
lig_tr = lig_X[tr_idx]
metrics_md = (
f"**Eval (held-out)** — RMSE: {rmse:.2f} pAff (≈×{10**rmse:.1f}), "
f"R²: {r2:.2f}, ROC-AUC: {roc:.2f}, PR-AUC: {pr:.2f}"
)
print("[train] done.")
def q90_for(p):
i = int(np.digitize([p], bins)[0]) if bins is not None else 0
i = max(0, min(i, len(q90_table)-1)) if q90_table is not None else 0
return q90_table[i] if q90_table is not None else 0.75 # conservative fallback
# Try real training; otherwise install heuristic heads
if have_data:
_train_models_from_df(df)
else:
print("[boot] No dataset found — using heuristic heads (demo mode).")
class HeuristicReg:
def predict(self, X):
# X: [B, Dp+Dl]; take ligand part and compute cosine to protein-projected vector
Dp = prot_vec.shape[0]
lig = X[:, Dp:]
# project protein to ligand dims
pv = prot_vec[:lig.shape[1]]
pv = pv / (np.linalg.norm(pv) + 1e-8)
lig_n = lig / (np.linalg.norm(lig, axis=1, keepdims=True)+1e-8)
sim = (lig_n @ pv)
return 5.5 + 2.0*(sim.clip(-1,1)+1)/2.0 # ~ [4.5,7.5]
class HeuristicClf:
def predict_proba(self, X):
Dp = prot_vec.shape[0]
lig = X[:, Dp:]
pv = prot_vec[:lig.shape[1]]
pv = pv / (np.linalg.norm(pv) + 1e-8)
lig_n = lig / (np.linalg.norm(lig, axis=1, keepdims=True)+1e-8)
sim = (lig_n @ pv)
z = (sim - sim.min()) / (sim.max()-sim.min()+1e-8)
p = 1/(1+np.exp(-4*(z-0.5)))
return np.vstack([1-p, p]).T
reg = HeuristicReg()
clf = HeuristicClf()
clf_cal = clf
bins = np.linspace(4.0, 8.0, 8)
q90_table = np.full(len(bins)+1, 0.75, dtype=np.float32)
lig_tr = np.zeros((1, mdl_l.config.hidden_size), dtype=np.float32)
metrics_md = "*(Demo mode — upload tem1_clean.csv to train real heads.)*"
# -----------------------------
# Prediction helpers
# -----------------------------
def train_similarity(smiles):
enc = tok_l([smiles], padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)
with torch.inference_mode():
lig = mdl_l(**enc).last_hidden_state[:,0,:].cpu().numpy().astype(np.float32)
if lig_tr is None or lig_tr.shape[0]==0:
return 0.0
sim = cosine_similarity(lig, lig_tr)[0]
return float(sim.max())
import matplotlib.pyplot as plt # (already imported at top, fine to keep)
import traceback
import matplotlib.pyplot as plt # keep after matplotlib.use("Agg")
def _blank_fig(width=3.6, height=0.6):
fig = plt.figure(figsize=(width, height))
plt.axis("off")
return fig
def predict_smiles(smiles: str):
try:
# Empty input → friendly message + blank fig
if not smiles:
return "Please enter a SMILES", _blank_fig()
# 1) ligand embedding
enc = tok_l([smiles], padding=True, truncation=True, max_length=256, return_tensors="pt").to(device)
with torch.inference_mode():
out = mdl_l(**enc).last_hidden_state
lig = out[:, 0, :].detach().cpu().numpy().astype(np.float32)
# 2) joint feature
fx = np.hstack([prot_vec.reshape(1, -1), lig]).astype(np.float32)
# 3) regression + interval
p_aff = float(reg.predict(fx)[0])
q90 = q90_for(p_aff)
p_lo, p_hi = p_aff - q90, p_aff + q90
nM_center = pAff_to_nM(p_aff)
nM_hi, nM_lo = pAff_to_nM(p_hi), pAff_to_nM(p_lo)
# 4) calibrated binder probability
try:
p_cal = float(clf_cal.predict_proba(fx)[:, 1])
except Exception:
p_cal = float(clf.predict_proba(fx)[:, 1])
label = conf_label(p_cal); mark = conf_emoji(p_cal)
badge = " (≤1 µM)" if p_aff >= PAFF_BINDER_THRESHOLD else ""
# 5) similarity
sim = train_similarity(smiles)
sim_note = (f"\nNearest-set similarity: {sim:.2f}"
if sim >= 0.60 else
f"\n⚠️ Low similarity to training set: {sim:.2f}")
md = (
f"**Predicted pAff:** {p_aff:.2f} (−log10 M){badge} → **Kd ≈ {fmt_conc(nM_center)}**\n\n"
f"**90% interval:** {p_lo:.2f} — {p_hi:.2f} (≈ {fmt_conc(nM_hi)} to {fmt_conc(nM_lo)})\n\n"
f"**Binder confidence:** {mark} {label} ({p_cal:.2f}){sim_note}\n"
)
# Mini bar to visualize P(binder)
fig = plt.figure(figsize=(3.6, 0.6))
ax = fig.add_axes([0.07, 0.35, 0.86, 0.35])
ax.barh([0], [p_cal], height=0.6)
ax.set_xlim(0, 1)
ax.set_yticks([])
ax.set_xticks([0, 0.5, 1.0])
ax.set_title("P(binder)")
for spine in ax.spines.values():
spine.set_visible(False)
return md, fig
except Exception as e:
# Show the error inline so we can debug without checking logs
tb = traceback.format_exc(limit=5)
msg = f"❌ **Error:** {e}\n\n```\n{tb}\n```"
return msg, _blank_fig()
def batch_predict(smiles_text):
smi = _parse_smiles_block(smiles_text)
if not smi:
return [], np.array([]), np.array([])
lig = _embed_ligands(smi) # (L, Dl)
P = np.repeat(prot_vec.reshape(1, -1), len(smi), 0) # (L, Dp)
X = np.hstack([P, lig]).astype(np.float32) # (L, Dp+Dl)
p_aff = reg.predict(X)
p_bind = clf.predict_proba(X)[:, 1]
return smi, p_aff, p_bind
def plot_paff_bars(names, paff, paff_thr=PAFF_BINDER_THRESHOLD):
names = list(names); paff = np.array(paff, dtype=float)
fig, ax = plt.subplots(figsize=(max(6, len(names)*0.6), 3.2))
ax.bar(range(len(names)), paff)
ax.axhline(paff_thr, linestyle="--")
ax.set_xticks(range(len(names)))
ax.set_xticklabels([n[:16]+("…" if len(n)>16 else "") for n in names], rotation=45, ha="right")
ax.set_ylabel("Predicted pAff (−log10 M)"); ax.set_title("Batch predictions — pAff")
plt.tight_layout()
return fig
def plot_paff_vs_pbind(names, paff, pbind, hi=0.80, mid=0.60, paff_thr=PAFF_BINDER_THRESHOLD):
names = list(names); paff = np.array(paff, dtype=float); pbind = np.array(pbind, dtype=float)
fig, ax = plt.subplots(figsize=(5.8, 4.2))
ax.scatter(paff, pbind, s=36)
ax.axvline(paff_thr, linestyle="--"); ax.axhline(hi, linestyle="--"); ax.axhline(mid, linestyle="--")
top = np.argsort(-(paff + pbind))[:10]
for i in top:
lbl = names[i][:18] + ("…" if len(names[i]) > 18 else "")
ax.annotate(lbl, (paff[i], pbind[i]), xytext=(4, 4), textcoords="offset points")
ax.set_xlabel("Predicted pAff (−log10 M)"); ax.set_ylabel("Calibrated P(binder)")
ax.set_title("Batch predictions"); plt.tight_layout()
return fig
def heatmap_predict(smiles_block):
smi_list = _parse_smiles_block(smiles_block)
if not smi_list:
fig = plt.figure(figsize=(4, 2))
plt.axis("off")
plt.text(0.5, 0.5, "No SMILES provided", ha="center", va="center")
return fig
# Embed ligands
ligs = _embed_ligands(smi_list)
# Joint features (protein + ligands)
pv_rep = np.repeat(prot_vec.reshape(1, -1), len(smi_list), axis=0)
fx = np.hstack([pv_rep, ligs]).astype(np.float32)
# Predict pAff (single protein row)
p_affs = reg.predict(fx) # shape (L,)
M = p_affs.reshape(1, -1) # 1 x L
fig, ax = plt.subplots(figsize=(max(6, len(smi_list)*0.8), 2.8))
im = ax.imshow(M, aspect="auto")
ax.set_xticks(range(len(smi_list)))
ax.set_xticklabels([s[:14] + ("…" if len(s) > 14 else "") for s in smi_list],
rotation=45, ha="right")
ax.set_yticks([0]); ax.set_yticklabels(["TEM-1 (WT)"])
cbar = fig.colorbar(im, ax=ax); cbar.set_label("Predicted pAff")
# Mark predicted binders (>= threshold)
for j in range(M.shape[1]):
if M[0, j] >= PAFF_BINDER_THRESHOLD:
ax.text(j, 0, "★", ha="center", va="center", color="white", fontsize=12)
ax.set_title("Heatmap — predicted pAff (higher is better)")
plt.tight_layout()
return fig
# -----------------------------
# Gradio UI
# -----------------------------
with gr.Blocks(title="Antibiotic Resistance Target Finder — TEM-1") as demo:
gr.Markdown("""\
# Antibiotic Resistance Target Finder — TEM-1
**Goal:** Predict how tightly a small molecule binds **TEM-1 β-lactamase** variants.
**How to use (2 steps):**
1) Paste a **SMILES** string and click **Submit** to get a prediction.
2) (Optional) Paste multiple SMILES for batch plots and a heatmap.
*Protein embeddings:* ESM-2 (35M) · *Ligand embeddings:* ChemBERTa · *Models:* XGBoost + LogisticRegression
""")
with gr.Row():
smi_in = gr.Textbox(label="SMILES", placeholder="e.g., CC1=CC(=O)C=CC1=O", lines=1)
btn = gr.Button("Submit", variant="primary")
out_md = gr.Markdown()
out_plot = gr.Plot()
btn.click(fn=predict_smiles, inputs=smi_in, outputs=[out_md, out_plot])
gr.Markdown("""---
### Batch mode (paste 1–100 SMILES separated by newlines, commas, or semicolons)
""")
smi_batch = gr.Textbox(label="Batch SMILES", lines=6, placeholder="SMILES per line ...")
with gr.Row():
btn_bars = gr.Button("Bar chart (pAff)")
btn_scatter = gr.Button("Scatter (pAff vs P(binder))")
btn_heat = gr.Button("Heatmap")
plot1 = gr.Plot()
plot2 = gr.Plot()
plot3 = gr.Plot()
def _bars(smiblock):
names, paff, pbind = batch_predict(smiblock)
return plot_paff_bars(names, paff)
def _scatter(smiblock):
names, paff, pbind = batch_predict(smiblock)
return plot_paff_vs_pbind(names, paff, pbind)
def _heat(smiblock):
return heatmap_predict(smiblock)
btn_bars.click(_bars, inputs=smi_batch, outputs=plot1)
btn_scatter.click(_scatter, inputs=smi_batch, outputs=plot2)
btn_heat.click(_heat, inputs=smi_batch, outputs=plot3)
with gr.Accordion("Model card: assumptions, metrics & limits", open=False):
gr.Markdown("""\
**Compute footprint:** small (≤50M embeddings + lightweight heads). Runs on CPU in Spaces.
%s
**Assumptions / caveats**
- Trained on **TEM-1** datasets; predictions for very dissimilar chemotypes are less certain.
- Reported “confidence” is **calibrated** on a held-out set; not a substitute for wet-lab validation.
- Use as a **ranking/triage** tool, not as a definitive activity claim.
**pAff** is −log10(Kd in molar). Bigger is better. Example: 1 µM → pAff=6; 100 nM → 7; 10 nM → 8.
""" % metrics_md)
demo.launch() |