Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -95,6 +95,21 @@ vector_store = Qdrant(
|
|
| 95 |
)
|
| 96 |
retriever = vector_store.as_retriever()
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
|
|
@@ -137,9 +152,6 @@ elif "All" in selected_model:
|
|
| 137 |
from groq import Groq
|
| 138 |
import google.generativeai as genai
|
| 139 |
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
| 140 |
-
pair_ranker = pipeline("text-classification", model="llm-blender/PairRM")
|
| 141 |
-
gen_fuser = pipeline("text-generation", model="llm-blender/gen_fuser_3b", max_length=2048, do_sample=False)
|
| 142 |
-
|
| 143 |
def get_all_model_responses(prompt):
|
| 144 |
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
|
| 145 |
[{"role": "system", "content": prompt}]).content
|
|
@@ -332,26 +344,6 @@ def rerank_with_cohere(query, documents, top_n=5):
|
|
| 332 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
| 333 |
return [documents[result.index] for result in results]
|
| 334 |
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
pair_ranker = pipeline(
|
| 340 |
-
"text-classification",
|
| 341 |
-
model="llm-blender/PairRM",
|
| 342 |
-
tokenizer="llm-blender/PairRM",
|
| 343 |
-
return_all_scores=True
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
gen_fuser = pipeline(
|
| 347 |
-
"text-generation",
|
| 348 |
-
model="llm-blender/gen_fuser_3b",
|
| 349 |
-
tokenizer="llm-blender/gen_fuser_3b",
|
| 350 |
-
max_length=2048,
|
| 351 |
-
do_sample=False
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
-
|
| 355 |
# Final answer generation using reranked context
|
| 356 |
def get_reranked_response(query):
|
| 357 |
docs = retriever.get_relevant_documents(query)
|
|
|
|
| 95 |
)
|
| 96 |
retriever = vector_store.as_retriever()
|
| 97 |
|
| 98 |
+
pair_ranker = pipeline(
|
| 99 |
+
"text-classification",
|
| 100 |
+
model="llm-blender/PairRM",
|
| 101 |
+
tokenizer="llm-blender/PairRM",
|
| 102 |
+
return_all_scores=True
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
gen_fuser = pipeline(
|
| 106 |
+
"text-generation",
|
| 107 |
+
model="llm-blender/gen_fuser_3b",
|
| 108 |
+
tokenizer="llm-blender/gen_fuser_3b",
|
| 109 |
+
max_length=2048,
|
| 110 |
+
do_sample=False
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
|
| 114 |
|
| 115 |
|
|
|
|
| 152 |
from groq import Groq
|
| 153 |
import google.generativeai as genai
|
| 154 |
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
|
|
|
|
|
|
|
|
|
| 155 |
def get_all_model_responses(prompt):
|
| 156 |
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
|
| 157 |
[{"role": "system", "content": prompt}]).content
|
|
|
|
| 344 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
| 345 |
return [documents[result.index] for result in results]
|
| 346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
# Final answer generation using reranked context
|
| 348 |
def get_reranked_response(query):
|
| 349 |
docs = retriever.get_relevant_documents(query)
|