Spaces:
Runtime error
Runtime error
add: inference code.
Browse files- app.py +139 -0
- requirements.txt +4 -0
app.py
CHANGED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import imutils
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from pytorchvideo.transforms import (
|
| 7 |
+
ApplyTransformToKey,
|
| 8 |
+
Normalize,
|
| 9 |
+
RandomShortSideScale,
|
| 10 |
+
RemoveKey,
|
| 11 |
+
ShortSideScale,
|
| 12 |
+
UniformTemporalSubsample,
|
| 13 |
+
)
|
| 14 |
+
from torchvision.transforms import (
|
| 15 |
+
Compose,
|
| 16 |
+
Lambda,
|
| 17 |
+
RandomCrop,
|
| 18 |
+
RandomHorizontalFlip,
|
| 19 |
+
Resize,
|
| 20 |
+
)
|
| 21 |
+
from transformers import VideoMAEFeatureExtractor, VideoMAEForVideoClassification
|
| 22 |
+
|
| 23 |
+
MODEL_CKPT = "sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset"
|
| 24 |
+
MODEL = VideoMAEForVideoClassification.from_pretrained(MODEL_CKPT)
|
| 25 |
+
PROCESSOR = VideoMAEFeatureExtractor.from_pretrained(MODEL_CKPT)
|
| 26 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
|
| 28 |
+
RESIZE_TO = PROCESSOR.size
|
| 29 |
+
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
|
| 30 |
+
IMAGE_STATS = {"image_mean": [0.485, 0.456, 0.406], "image_std": [0.229, 0.224, 0.225]}
|
| 31 |
+
VAL_TRANSFORMS = Compose(
|
| 32 |
+
[
|
| 33 |
+
UniformTemporalSubsample(NUM_FRAMES_TO_SAMPLE),
|
| 34 |
+
Lambda(lambda x: x / 255.0),
|
| 35 |
+
Normalize(IMAGE_STATS["image_mean"], IMAGE_STATS["image_std"]),
|
| 36 |
+
Resize((RESIZE_TO, RESIZE_TO)),
|
| 37 |
+
]
|
| 38 |
+
)
|
| 39 |
+
LABELS = list(MODEL.config.label2id.keys())
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def parse_video(video_file):
|
| 43 |
+
"""A utility to parse the input videos.
|
| 44 |
+
|
| 45 |
+
Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
|
| 46 |
+
"""
|
| 47 |
+
vs = cv2.VideoCapture(video_file)
|
| 48 |
+
|
| 49 |
+
# try to determine the total number of frames in the video file
|
| 50 |
+
try:
|
| 51 |
+
prop = (
|
| 52 |
+
cv2.cv.CV_CAP_PROP_FRAME_COUNT
|
| 53 |
+
if imutils.is_cv2()
|
| 54 |
+
else cv2.CAP_PROP_FRAME_COUNT
|
| 55 |
+
)
|
| 56 |
+
total = int(vs.get(prop))
|
| 57 |
+
print("[INFO] {} total frames in video".format(total))
|
| 58 |
+
|
| 59 |
+
# an error occurred while trying to determine the total
|
| 60 |
+
# number of frames in the video file
|
| 61 |
+
except:
|
| 62 |
+
print("[INFO] could not determine # of frames in video")
|
| 63 |
+
print("[INFO] no approx. completion time can be provided")
|
| 64 |
+
total = -1
|
| 65 |
+
|
| 66 |
+
frames = []
|
| 67 |
+
|
| 68 |
+
# loop over frames from the video file stream
|
| 69 |
+
while True:
|
| 70 |
+
# read the next frame from the file
|
| 71 |
+
(grabbed, frame) = vs.read()
|
| 72 |
+
if frame is not None:
|
| 73 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 74 |
+
frames.append(frame)
|
| 75 |
+
# if the frame was not grabbed, then we have reached the end
|
| 76 |
+
# of the stream
|
| 77 |
+
if not grabbed:
|
| 78 |
+
break
|
| 79 |
+
|
| 80 |
+
return frames
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def preprocess_video(frames: list):
|
| 84 |
+
"""Utility to apply preprocessing transformations to a video tensor."""
|
| 85 |
+
# Each frame in the `frames` list has the shape: (height, width, num_channels).
|
| 86 |
+
# Collated together the `frames` has the the shape: (num_frames, height, width, num_channels).
|
| 87 |
+
# So, after converting the `frames` list to a torch tensor, we permute the shape
|
| 88 |
+
# such that it becomes (num_channels, num_frames, height, width) to make
|
| 89 |
+
# the shape compatible with the preprocessing transformations. After applying the
|
| 90 |
+
# preprocessing chain, we permute the shape to (num_frames, num_channels, height, width)
|
| 91 |
+
# to make it compatible with the model. Finally, we add a batch dimension so that our video
|
| 92 |
+
# classification model can operate on it.
|
| 93 |
+
video_tensor = torch.tensor(np.array(frames).astype(frames[0].dtype))
|
| 94 |
+
video_tensor = video_tensor.permute(
|
| 95 |
+
3, 0, 1, 2
|
| 96 |
+
) # (num_channels, num_frames, height, width)
|
| 97 |
+
video_tensor_pp = VAL_TRANSFORMS(video_tensor)
|
| 98 |
+
video_tensor_pp = video_tensor_pp.permute(
|
| 99 |
+
1, 0, 2, 3
|
| 100 |
+
) # (num_frames, num_channels, height, width)
|
| 101 |
+
video_tensor_pp = video_tensor_pp.unsqueeze(0)
|
| 102 |
+
return video_tensor_pp.to(DEVICE)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def infer(video_file):
|
| 106 |
+
frames = parse_video(video_file)
|
| 107 |
+
video_tensor = preprocess_video(frames)
|
| 108 |
+
inputs = {"pixel_values": video_tensor}
|
| 109 |
+
|
| 110 |
+
# forward pass
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
outputs = MODEL(**inputs)
|
| 113 |
+
logits = outputs.logits
|
| 114 |
+
softmax_scores = torch.nn.functional.softmax(logits, dim=0)
|
| 115 |
+
confidences = {LABELS[i]: float(softmax_scores[i]) for i in range(len(LABELS))}
|
| 116 |
+
return confidences
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
gr.Interface(
|
| 120 |
+
fn=infer,
|
| 121 |
+
inputs=gr.Video(type="file"),
|
| 122 |
+
outputs=gr.Label(num_top_classes=3),
|
| 123 |
+
examples=[
|
| 124 |
+
["examples/babycrawling.mp4"],
|
| 125 |
+
["examples/baseball.mp4"],
|
| 126 |
+
["examples/balancebeam.mp4"],
|
| 127 |
+
],
|
| 128 |
+
title="VideoMAE fine-tuned on a subset of UCF-101",
|
| 129 |
+
description=(
|
| 130 |
+
"Gradio demo for VideoMAE for video classification. To use it, simply upload your video or click one of the"
|
| 131 |
+
" examples to load them. Read more at the links below."
|
| 132 |
+
),
|
| 133 |
+
article=(
|
| 134 |
+
"<div style='text-align: center;'><a href='https://huggingface.co/docs/transformers/model_doc/videomae' target='_blank'>VideoMAE</a>"
|
| 135 |
+
" <center><a href='https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset' target='_blank'>Fine-tuned Model</a></center></div>"
|
| 136 |
+
),
|
| 137 |
+
allow_flagging=False,
|
| 138 |
+
allow_screenshot=False,
|
| 139 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python
|
| 2 |
+
imutils
|
| 3 |
+
numpy
|
| 4 |
+
torch
|