Safiatuddinfitra18's picture
Update app.py
095ced6 verified
raw
history blame
3.9 kB
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import spaces
class LlamaGuardModeration:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_id = "meta-llama/Llama-Guard-3-8B" # Change the model ID if needed
self.dtype = torch.bfloat16
# HuggingFace token retrieval
self.huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
if not self.huggingface_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
# Initialize the model and tokenizer
self.initialize_model()
def initialize_model(self):
"""Initialize model and tokenizer."""
if self.model is None:
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id,
use_auth_token=self.huggingface_token
)
# Initialize model
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
torch_dtype=self.dtype,
device_map="auto",
use_auth_token=self.huggingface_token,
low_cpu_mem_usage=True
)
@staticmethod
def parse_llama_guard_output(result):
"""Parse Llama Guard output."""
safety_assessment = result.split("<END CONVERSATION>")[-1].strip()
lines = [line.strip().lower() for line in safety_assessment.split('\n') if line.strip()]
if not lines:
return "Error", "No valid output", safety_assessment
safety_status = next((line for line in lines if line in ['safe', 'unsafe']), None)
if safety_status == 'safe':
return "Safe", "None", safety_assessment
elif safety_status == 'unsafe':
violated_categories = next(
(lines[i+1] for i, line in enumerate(lines) if line == 'unsafe' and i+1 < len(lines)),
"Unspecified"
)
return "Unsafe", violated_categories, safety_assessment
else:
return "Error", f"Invalid output: {safety_status}", safety_assessment
@spaces.GPU()
def moderate(self, user_input, assistant_response):
"""Run moderation check."""
chat = [
{"role": "user", "content": user_input},
{"role": "assistant", "content": assistant_response},
]
# Tokenize the inputs and make sure the model runs on the correct device
input_ids = self.tokenizer(
[f"{item['role']}: {item['content']}" for item in chat],
return_tensors="pt",
padding=True,
truncation=True
).to(self.device)
with torch.no_grad():
output = self.model.generate(
input_ids=input_ids["input_ids"],
max_new_tokens=200,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=False
)
result = self.tokenizer.decode(output[0], skip_special_tokens=True)
return self.parse_llama_guard_output(result)
# Create an instance of the moderator
moderator = LlamaGuardModeration()
# Set up Gradio interface
iface = gr.Interface(
fn=moderator.moderate,
inputs=[
gr.Textbox(lines=3, label="User Input"),
gr.Textbox(lines=3, label="Assistant Response")
],
outputs=[
gr.Textbox(label="Safety Status"),
gr.Textbox(label="Violated Categories"),
gr.Textbox(label="Raw Output")
],
title="Llama Guard Moderation",
description="Enter a user input and an assistant response to check for content moderation."
)
if __name__ == "__main__":
iface.launch()