parserPDF / converters /extraction_converter.py
semmyk's picture
baseline08_beta0.4.0_06Oct25: Refactored. now runs without ProcessPoolExecutor. Marker inherently handles ThreadPoolExecutor and ProcessPoolExecutor. Gradio ui separated from Gradio process logics
c6fb648
raw
history blame
15 kB
import os
from pathlib import Path
import traceback
#import time
from typing import Dict, Any, Type, Optional, Union, Literal #, BaseModel
from pydantic import BaseModel
from marker.models import create_model_dict
#from marker.converters.extraction import ExtractionConverter as MarkerExtractor ## structured pydantic extraction
from marker.converters.pdf import PdfConverter as MarkerConverter ## full document convertion/extraction
from marker.config.parser import ConfigParser ## Process custom configuration
from marker.services.openai import OpenAIService as MarkerOpenAIService
from marker.settings import settings
#from sympy import Union
from utils.logger import get_logger
logger = get_logger(__name__)
# create/load models. Called to curtail reloading models at each instance
def load_models():
""" Creates Marker's models dict. Initiate download of models """
return create_model_dict()
# Full document converter
class DocumentConverter:
"""
Business logic wrapper using Marker OpenAI LLM Services to
convert documents (PDF, HTML files) into markdowns + assets.
"""
def __init__(self,
#provider: str,
model_id: str,
#base_url: str,
hf_provider: str,
#endpoint_url: str,
#backend_choice: str,
#system_message: str,
#max_tokens: int,
temperature: float,
top_p: float,
#stream: bool,
api_token: str,
openai_base_url: str = "https://router.huggingface.co/v1",
openai_image_format: Optional[str] = "webp",
max_workers: Optional[str] = 1, #4, for config_dict["pdftext_workers"]
max_retries: Optional[int] = 2,
debug: Optional[bool] = None, #bool = False,
#output_format: str = "markdown",
output_format: Literal["markdown", "json", "html"] = "markdown",
output_dir: Optional[Union[str, Path]] = "output_dir",
use_llm: Optional[bool] = None, #bool = False, #Optional[bool] = False, #True,
force_ocr: Optional[bool] = None, #bool = False,
strip_existing_ocr: Optional[bool] = None, #bool = False,
disable_ocr_math: Optional[bool] = None, #bool = False,
page_range: Optional[str] = None, #str = None #Optional[str] = None,
):
#self.converter = None #MarkerConverter
self.model_id = model_id #"model_name"
self.openai_api_key = api_token ## to replace dependency on self.client.openai_api_key
self.openai_base_url = openai_base_url #, #self.base_url,
self.temperature = temperature #, self.client.temperature,
self.top_p = top_p # self.client.top_p,
self.llm_service = MarkerOpenAIService
self.openai_image_format = openai_image_format #"png" #better compatibility
self.max_workers = max_workers #int(1) ## pass to config_dict["pdftext_workers"]
self.max_retries = max_retries ## pass to __call__
self.debug = debug
#self.output_format = output_format
self.output_format = output_format
self.output_dir = settings.DEBUG_DATA_FOLDER if debug else output_dir,
self.use_llm = use_llm if use_llm else False #use_llm[0] if isinstance(use_llm, tuple) else use_llm, #False, #True,
self.force_ocr = force_ocr if force_ocr else False
self.strip_existing_ocr = strip_existing_ocr #if strip_existing_ocr else False
self.disable_ocr_math = disable_ocr_math #if disable_ocr else False
#self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range ##SMY: iterating twice because self.page casting as hint type tuple!
self.page_range = page_range if page_range else None
# self.page_range = page_range[0] if isinstance(page_range, tuple) else page_range if isinstance(page_range, str) else None, ##Example: "0,4-8,16" ##Marker parses as List[int] #]debug #len(pdf_file)
self.converter = None
# 0) Instantiate the LLM Client (OPENAIChatClient): Get a provider‐agnostic chat function
##SMY: #future. Plan to integrate into Marker: uses its own LLM services (clients). As at 1.9.2, there's no huggingface client service.
'''
try:
self.client = OpenAIChatClient(
model_id=model_id,
hf_provider=hf_provider,
#base_url=base_url,
api_token=api_token,
temperature=temperature,
top_p=top_p,
)
logger.log(level=20, msg="βœ”οΈ OpenAIChatClient instantiated:", extra={"model_id": self.client.model_id, "chatclient": str(self.client)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error initialising OpenAIChatClient: {exc}\n{tb}")
raise RuntimeError(f"βœ— Error initialising OpenAIChatClient: {exc}\n{tb}") #.with_traceback(tb)
'''
# 1) # Define the custom configuration for the Hugging Face LLM.
# Use typing.Dict and typing.Any for flexible dictionary type hints
try:
#self.config_dict: Dict[str, Any] = self.get_config_dict(model_id=model_id, llm_service=str(self.llm_service), output_format=output_format)
self.config_dict: Dict[str, Any] = self.get_config_dict()
##SMY: execute if page_range is none. `else None` ensures valid syntactic expression
##SMY: if falsely empty tuple () or None, pop the "page_range" key-value pair, else do nothing if truthy tuple value (i.e. keep as-is)
self.config_dict.pop("page_range", None) if not self.config_dict.get("page_range") else None
# use_llm test moved to config_dict
#self.config_dict.pop("use_llm", None) if not self.config_dict.get("use_llm") or self.config_dict.get("use_llm") is False or self.config_dict.get("use_llm") == 'False' else None
self.config_dict.pop("force_ocr", None) if not self.config_dict.get("force_ocr") or self.config_dict.get("force_ocr") is False or self.config_dict.get("force_ocr") == 'False' else None
logger.log(level=20, msg="βœ”οΈ config_dict custom configured:", extra={"service": "openai"}) #, "config": str(self.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"βœ— Error configuring custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 2) Use the Marker's ConfigParser to process configuration.
# The `ConfigParser` class is explicitly imported and used as the type hint.
try:
config_parser: ConfigParser = ConfigParser(self.config_dict)
logger.log(level=20, msg="βœ”οΈ parsed/processed custom config_dict:", extra={"config": str(config_parser)}) #.config_dict)})
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error parsing/processing custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"βœ— Error parsing/processing custom config_dict: {exc}\n{tb}") #.with_traceback(tb)
# 3) Load models if not already loaded in reload mode
from globals import config_load_models
try:
if config_load_models.model_dict:
model_dict = config_load_models.model_dict
#elif not config_load_models.model_dict or 'model_dict' not in globals():
else:
model_dict = load_models()
'''if 'model_dict' not in globals():
#model_dict = self.load_models()
model_dict = load_models()'''
except OSError as exc_ose:
tb = traceback.format_exc() #exc.__traceback__
logger.warning(f"⚠️ OSError: the paging file is too small (to complete reload): {exc_ose}\n{tb}")
pass
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error loading models (reload): {exc}\n{tb}")
raise RuntimeError(f"βœ— Error loading models (reload): {exc}\n{tb}") #.with_traceback(tb)
# 4) Instantiate Marker's MarkerConverter (PdfConverter) with config managed by config_parser
try: # Assign llm_service if api_token. ##SMY: split and slicing ##Gets the string value
#llm_service_str = None if api_token == '' or api_token is None or self.use_llm is False else str(self.llm_service).split("'")[1] #
llm_service_str = None if not self.use_llm or self.use_llm == "False" or self.use_llm is False else str(self.llm_service).split("'")[1] #
# sets api_key required by Marker ## to handle Marker's assertion test on OpenAI
if llm_service_str:
os.environ["OPENAI_API_KEY"] = api_token if api_token and api_token != '' else os.getenv("OPENAI_API_KEY") or os.getenv("GEMINI_API_KEY") or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
#logger.log(level=20, msg="self.converter: instantiating MarkerConverter:", extra={"llm_service_str": llm_service_str, "api_token": api_token}) ##debug
config_dict = config_parser.generate_config_dict()
#config_dict["pdftext_worker"] = self.max_workers #1 ##SMY: moved to get_config_dicts()
#self.converter: marker.converters.pdf.PdfConverter
self.converter = MarkerConverter(
#artifact_dict=create_model_dict(),
artifact_dict=model_dict if model_dict else create_model_dict(),
config=config_dict,
#config=config_parser.generate_config_dict(),
#llm_service=self.llm_service ##SMY expecting str but self.llm_service, is service object marker.services of type BaseServices
llm_service=llm_service_str, ##resolve
processor_list=config_parser.get_processors(),
renderer=config_parser.get_renderer(),
)
logger.log(level=20, msg="βœ”οΈ MarkerConverter instantiated successfully:", extra={"converter.config": str(self.converter.config.get("openai_base_url")), "use_llm":self.converter.use_llm})
#return self.converter ##SMY: to query why did I comment out?. Bingo: "__init__() should return None, not 'PdfConverter'"
except Exception as exc:
tb = traceback.format_exc
logger.exception(f"βœ— Error initialising MarkerExtractor: {exc}\n{tb}")
raise RuntimeError(f"βœ— Error initialising MarkerExtractor: {exc}\n{tb}")
# Define the custom configuration for HF LLM.
#def get_config_dict(self, model_id: str, llm_service=MarkerOpenAIService, output_format: Optional[str] = "markdown" ) -> Dict[str, Any]:
def get_config_dict(self, ) -> Dict[str, Any]:
""" Define the custom configuration for the Hugging Face LLM: combining Markers cli_options and LLM. """
try:
## LLM Enable higher quality processing. ## See MarkerOpenAIService,
##llm_service = llm_service.removeprefix("<class '").removesuffix("'>") # e.g <class 'marker.services.openai.OpenAIService'>
#llm_service = str(llm_service).split("'")[1] ## SMY: split and slicing
self.use_llm = self.use_llm[0] if isinstance(self.use_llm, tuple) else self.use_llm
self.page_range = self.page_range[0] if isinstance(self.page_range, tuple) else self.page_range #if isinstance(self.page_range, str) else None, ##SMY: passing as hint type tuple!
##SMY: TODO: convert to {inputs} and called from gradio_ui
if not self.use_llm or self.use_llm == 'False':
config_dict = {
"output_format" : self.output_format, #"markdown",
#"openai_model" : self.model_id, #self.client.model_id, #"model_name"
#"openai_api_key" : self.openai_api_key, #self.client.openai_api_key, #self.api_token,
#"openai_base_url": self.openai_base_url, #self.client.base_url, #self.base_url,
#"temperature" : self.temperature, #self.client.temperature,
#"top_p" : self.top_p, #self.client.top_p,
#"openai_image_format": self.openai_image_format, #"webp", #"png" #better compatibility
"pdftext_workers": self.max_workers, ## number of workers to use for pdftext."
#"max_retries" : self.max_retries, #3, ## pass to __call__
"debug" : self.debug,
"output_dir" : self.output_dir,
#"use_llm" : self.use_llm, #False, #True,
"force_ocr" : self.force_ocr, #False,
"strip_existing_ocr": self.strip_existing_ocr, #False
"disable_ocr_math": self.disable_ocr_math,
"page_range" : self.page_range, ##debug #len(pdf_file)
}
else:
config_dict = {
"output_format" : self.output_format, #"markdown",
"openai_model" : self.model_id, #self.client.model_id, #"model_name"
"openai_api_key" : self.openai_api_key, #self.client.openai_api_key, #self.api_token,
"openai_base_url": self.openai_base_url, #self.client.base_url, #self.base_url,
"temperature" : self.temperature, #self.client.temperature,
"top_p" : self.top_p, #self.client.top_p,
"openai_image_format": self.openai_image_format, #"webp", #"png" #better compatibility
"pdftext_workers": self.max_workers, ## number of workers to use for pdftext."
#"max_retries" : self.max_retries, #3, ## pass to __call__
"debug" : self.debug,
"output_dir" : self.output_dir,
"use_llm" : self.use_llm, #False, #True,
"force_ocr" : self.force_ocr, #False,
"strip_existing_ocr": self.strip_existing_ocr, #False
"disable_ocr_math": self.disable_ocr_math,
"page_range" : self.page_range, ##debug #len(pdf_file)
}
return config_dict
except Exception as exc:
tb = traceback.format_exc() #exc.__traceback__
logger.exception(f"βœ— Error configuring custom config_dict: {exc}\n{tb}")
raise RuntimeError(f"βœ— Error configuring custom config_dict: {exc}\n{tb}") #").with_traceback(tb)
#raise