Spaces:
Sleeping
Sleeping
| from transformers import pipeline | |
| import gradio as gr | |
| classifier = pipeline("text-classification", model="bhadresh-savani/bert-base-uncased-emotion") | |
| label_map = { | |
| "LABEL_0": "HAM (Not Spam)", | |
| "LABEL_1": "SPAM" | |
| } | |
| def predict_spam(text): | |
| result = classifier(text)[0] | |
| label = label_map.get(result['label'], "Unknown") | |
| confidence = round(result['score'] * 100, 2) | |
| return f" Prediction: {label}\n Confidence: {confidence}%" | |
| # Build Gradio UI | |
| gr.Interface( | |
| fn=predict_spam, | |
| inputs=gr.Textbox(lines=4, placeholder="Enter a message..."), | |
| outputs="text", | |
| title=" Spam Detector", | |
| description="Detects SPAM vs HAM using a pretrained BERT-tiny model.", | |
| examples=[ | |
| "Win a free iPhone now!", | |
| "Hey, are we still on for dinner tonight?", | |
| "Your OTP is 456123.", | |
| "Click here to claim your reward." | |
| ] | |
| ).launch() | |